Lunar ROADSTER (Robotic Operator for Autonomous Development of Surface Trails and Exploration Routes)

"Starting with a foothold on the Moon, we pave the way to the cosmos"

Ankit Aggarwal

Deepam Ameria

Bhaswanth Ayapilla

Simson D'Souza

Boxiang (William) Fu

Dr. William "Red" Whittaker

Motivation: The Lunar Polar Highway

Is it possible for a solar-powered rover to repeatedly drive around the Moon and never encounter a sunset?

3

Motivation: The Lunar Polar Highway

Sun-synchronous circumnavigation around Moon at 28 days x 24 hr = 672 hour sun rotation

At	eq	uatoi
At	50	deg
At	60	deg
At	70	deg
At	75	deg
At	80	deg
At	81	deg

11,000 km 7,040 km 5,500 km 3,700 km 2,800 km 1,870 km 1,529 km

16 kph 10 kph 8 kph 6 kph 4 kph 3 kph 2.5 kph

Jogging speed if the route was flat, circular and traversable

The Project: Lunar ROADSTER

An autonomous **moon-working** rover capable of finding ideal exploration routes and creating traversable surface trails.

By grooming trail paths, rovers with less traversing capabilities will be able to travel at higher speeds and higher power efficiencies.

A traversable and circuitous trail path will allow rovers to maintain sun-synchronicity, thereby allowing machines to run for much longer.

The groomed trails will become the backbone for colonization of the Moon by enabling transportation, logistics and enterprise development.

Use Case 1:

A road is being built to connect two lunar bases on the polar region of the moon. At the lunar base, the Lunar ROADSTER is given a detailed map of the lunar polar region.

The rover calculates a suitable path that connects the two bases that is free from large obstacles and craters. Once outside, the Lunar ROADSTER observes its surroundings and localizes its position. It then departs the lunar base and follows the planned trajectory.

However, after traversing 500 meters, the rover notices a large obstacle in the path of the trajectory. The rover adjusts its planned path to navigate around the obstacle and alerts the lunar base of the updated trajectory.

Use Case 2:

The Lunar ROADSTER approaches a shallow crater in the route of the planned path. After already determining that it is not feasible to adjust to a new path that circumvents the crater, the rover beings to fill in the crater.

Luckily, the periphery of the crater has some excess regolith to fill in the crater. The rover takes the excess regolith from the dune and pushes them into the crater. During excavation, the rover slipped on the loose regolith and falls into the crater.

Luckily, the rover was built for such rugged terrains and easily climbs out of the crater and continues on excavating. Finally, it grooms the filled in crater to make it smooth.

Use Case 3:

After smoothing the crater, the rover backs up to view the groomed crater and validate the job. However, the rover determines that the groomed crater is still to steep and does not make a satisfactory trail. The rover returns to the crater location to re-groom the crater and make it smoother.

After the second attempt, the rover validates that the trail is now satisfactory. It sends this information to the user and continues on navigating the planned path.

Functional Requirements (Mandatory)

Sr. No.	Mandatory Functional Requirement
M.F.1	Shall perform trail path planning
M.F.2	Shall operate autonomously
M.F.3	Shall localize itself in a GPS denied environment
M.F.4	Shall navigate the planned path
M.F.5	Shall traverse uneven terrain
M.F.6	Shall choose craters to groom and avoid
M.F.7	Shall grade craters and level dunes
M.F.8	Shall validate grading and trail path
M.F.9	Shall communicate with the user

Non-Functional Requirements (Mandatory)

Sr. No.	Parameter	Description
M.N.1	Weight	The rover must weigh <mark>under 50kg</mark>
M.N.2	Cost	The cost for the project must be under \$5000
M.N.3	Computing Capacity	The onboard computer should be able to <mark>run all required tasks</mark>
M.N.4	Size/Form Factor	The rover should measure less than 1m in all dimensions

Non-Functional Requirements (Desirable)

Sr. No.	Parameter	Description
D.N.1	Technological Extensibility	The system will be well documented and designed so that future teams can easily access and build on the work
D.N.2	Aesthetics	Requirement from sponsor, the rover must look presentable and lunar-ready
D.N.3	Modularity	To enable tool interchangeability, the tool assemblies must be modular and easy to assemble/disassemble
D.N.4	Repeatability	The system will complete multiple missions without the need of maintenance

Performance Requirements (Mandatory)

Sr. No.	Performance Metrics
M.P.1	Will plan a path with cumulative deviation of <= 25% from chosen latitude's length
M.P.2	Will follow planned path to a maximum deviation of 10%
M.P.3	Will climb gradients up to 15° and have a contact pressure of less than 1.5 kPa
M.P.4	Will avoid craters >= 0.5 metres and avoid slopes >= 15°
M.P.5	Will fill craters of <mark>up to 0.5 meters</mark> in diameter and <mark>0.1m</mark> in depth
M.P.6	Will groom the trail to have a maximum traversal slope of 5°

Functional Architecture

Morphological Chart

Morphological Chart	Option 1	Option 2	Option 3	Option 4	Option 5
Path Planning	A *	Dijkstra's Graph Search	Greedy Best First	D*-Lite	
Localization Method	Total Station, IMU	Sun/Star Sensor, Visual Odometry, Wheel Odometry, IMU	LRO Correspondences, Wheel Odometry, IMU	Motion Capture, IMU	Visual Odometry, Wheel Odometry, IMU
Navigate	Pure Pursuit	RRT	Dynamic Window	Incremental Search	
Wheels	Air Filled	Metal	Plastic	Treads	
Chassis	Space Frame	Ladder Frame	Unibody	Monocoque	
Suspension	Rocker Bogie	Double Rocker	Multi-Link	Trailing/Leading Arm	Macpherson Strut
Motors	BDC	BLDC			
Drive System	Gearbox	Belt Drive	Chain Drive		
Powertrain	Lithium Based Battery	Solar Cells	Isotope		
Decision Architecture	Finite state machine	Single state machine			
Cut/Fill Methodology	Custom Algorithm	Kubla Software			
Manipulate	Front loader	Front grader	Chassis grader	Front loader & chassis grader	
Validate	Depth Camera on belly of rover	Lidar	Camera on top	IR Sensor on belly of rover	RADAR
Communicate With User	2.4 GHz Wi-Fi	5 GHz Wi-Fi	Bluetooth		
Sensor Fusion Method	Extended Kalman Filter	Particle Filter	Bayes Filter		

Cyber-Physical Architecture

16

Cyber-Physical Architecture

Cyber-Physical Architecture

Systems Level Weighted Objectives Tree

Systems Level Trade Study

Trade Studies	Systems Level	Lunar Grader				
Value Ratings *	Concept	Lunar ROADSTER	Crater Grader	Offworld Dozer	Human	
0: Inadequate	139					
2: Tolerable						
4: Adequate						
6: Good			ANTES	· rinual ···		
8: Excellent				- 3 C - 3 C - 3 C		
10: Perfect		IIINAD				
* Subjective Value Method						
Criteria	Weight Factor		Value (1 - 10) *		
Safety	12	7	7	9	0	
Navigate autonomously	11	8	8	9	5	
Ability to localize	11	8	7	9	1	
Ability to grade	8.25	9	9	0	3	
Ability to excavate	8.25	9	0	9	3	
Traversability	8.25	7	7	5	8	
Reliability	6	7	7	8	9	
Weight	6	8	10	2	6	
Cost	6	10	10	3	2	
Tool Size	6	7	2	9	4	
Repeatability	6	5	5	7	7	
Operation time	4.95	7	7		2	
Ability to communicate	3.3	8	8	8	8///	
Adaptability	3	6	5	5	10	
Final Score	100	7.673	6.6105	6.8145	4.158	

Sub-Systems Level Weighted Objectives Tree (1)

Sub-Systems Level Trade Study (1)

Trade Studies	Sub-Systems Level	Manipulation			
Value Ratings *	Concept	Front loader	Front loader Front grader		Front loader & chassis grader
0: Inadequate	- 0.1	The Pr			
2: Tolerable	2-11				
4: Adequate					
6: Good					
8: Excellent				0)-	
10: Perfect			Contraction of the second	Mines Hard	
* Subjective Value Method					
Criteria	Weight Factor		Value ((1 - 10) *	
Excavation volume	17.5	9	1	1	7
Grading area	17.5	1	8	9	7
Manipulation effort	15	5	6	7	4
Dust contamination	12	1	5	7	7
Controllability	10	4	5	6	6
Degrees of freedom	10	7	5	5	9
Size	9	5	5	4	4
Weight	4.5	5	7		4
Cost	4.5	5	5	5	4////
Final Score	100	4.62	5.065	5.64	6.11

Sub-Systems Level Weighted Objectives Tree (2)

Sub-Systems Level Trade Study (2)

Trade Studies	Sub-Systems Level	Localization Method				
Value Ratings *	Concept	Total Station, IMU	Sun/Star Sensor, Visual Odometry, Wheel Odometry, IMU	LRO Correspondences, Wheel Odometry, IMU	Motion Capture, IMU	Visual Odometry, Wheel Odometry, IMU
0: Inadequate 2: Tolerable 4: Adequate 6: Good 8: Excellent 10: Perfect * Subjective Value Method						ZED-M
Criteria	Weight Factor			Value (1 - 10) *		
Accuracy	30	8	4	6	9	4
Robustness	18	8	4	6	8	2
Computational efficiency	12	8	2	3	7	2
Lunar transferability	12	4	9	9	1	9
Reliability	12	8	5	7	9	6
Ease of use	8	9	5	5	7	2
External infrastructure dependency	8	3	9	1		
Final Score	100	7.2	4.96	5.64	6.82	4.48

Work Breakdown Structure

Work Breakdown Structure - Mechanical

Work Breakdown Structure - Computations

Work Breakdown Structure - Sense

Work Breakdown Structure - Electronics

Work Breakdown Structure - External Infrastructure

Work Breakdown Structure - Integration & Testing

Work Breakdown Structure - Management

Estimating Hours per Task

We estimated the time each task will take to complete on the basis of:

- CraterGrader's Timeline
- Advice from Red
- Advice from Dimi
- Prior Experiences

Based on this, we were able to devise the SVD and FVD split.

SVD and FVD Split

Spring Validation Demo	Fall Validation Demo
ROADSTER uses the excavator to groom one or two craters on a simple, straight path in the MoonYard.	ROADSTER uses both grader and excavator to create a circuitous path around the MoonYard.
This will be our Minimal Viable Product with simplified localization and path planning.	This will include more ambitious tasks such as Lunar-accurate environments and localization through Visual Odometry/ Structure for Motion

Schedule

	NOV	DEC	JAN '25	FEB '25	MAR '25	APR '25
KAN-84 Milestones						
KAN-1 Mechanical						
KAN-2 Obtain & Understand CraterGrader Hardware Fil IN PROGRESS						
KAN-3 Obtain Physical Rover DONE						
KAN-9 Design Excavator Assem TO DO						
KAN-4 Source Excavator Assem TO DO						
KAN-10 Manufacture Excavator Assem						
KAN-81 Excavator Assembly - Design I TO DO						
KAN-11 Excavator Assembly - Manufacture Iterations & Refineme TO DO						
KAN-13 Design Grader Assem TO DO						
KAN-12 Source Grader Assem						
KAN-14 Manufacture Grader Assem TO DO						
KAN-83 Grader Assembly - Design I TO DO						
KAN-82 Grader Assembly - Manufacture Iterations and Refineme TO DO						
KAN-16 Source Wheel Assem TO DO						
KAN-17 Modify Wheel Assembly - Iterations and Refineme						
KAN-18 Design and Manufacture Sensor Mounts						
KAN-19 Mechanical Assem TO DO						
KAN-20 Mechanical Assembly - Iterations and Refineme						
KAN-21 Quality Assuran TO DO						
KAN-22 Computations						
KAN-40 Sense						
KAN-49 Electronics						
KAN-63 External Infrastructure						
KAN-68 Management						

	NOV	DEC	JAN '25	FEB '25	МА	R '25	APR	'25
KAN-84 Milestones								
KAN-1 Mechanical								
X KAN-22 Computations								
KAN-40 Sense								
KAN-41 Source Sensors To bo								
KAN-42 Setup Encoder Drivers								
 KAN-43 Setup Mast Depth Camera Drivers TO Do 								
KAN-44 Setup Belly Depth Camera Drivers								
KAN-45 Setup IMU Drive								
KAN-46 Setup Radio Receiver Drive	1							
KAN-47 Setup Survey LiDARs & Environme								
KAN-48 Read Sensor Data using Jetson To be								
KAN-49 Electronics								Т
KAN-50 Source Electronics								
KAN-59 Devise Circuit Diagra								
KAN-60 Assemble Circuit	i.		1					
KAN-61 Test Circuit To ba								
KAN-62 Iterations & Refinement of Circ	r -							
KAN-63 External Infrastructure								
KAN-64 Source Total Stati To be	i.							
KAN-65 Setup Total Stati To bo	1							
KAN-66 Obtain 3D Map	i l							
KAN-67 Setup Operations Terminal	0		I					
KAN-68 Management								
KAN-69 Integration and Testi								

	NOV	DEC	JAN '25	FEB '25	N	1AR '25	APR '2
> S KAN-84 Milestones							
KAN-1 Mechanical							
> G KAN-22 Computations							
XAN-40 Sense							
XAN-49 Electronics							
KAN-63 External Infrastructure							
V S KAN-68 Management							
KAN-70 Manage Work TO DO							
KAN-80 Manage Documentation PD TO DO							
KAN-91 Manage Documentation S To Do							
KAN-71 Manage Finances TO DO							
KAN-72 Manage Schedules TO DO							
KAN-73 Manage HR TO DO							
KAN-74 Manage Risks TO DO							
✓ S KAN-69 Integration and Testi							
KAN-79 Setup Test Environme TO DO							
KAN-75 Generate 3D Map using Survey LiD TO DO							
KAN-76 Integrate Subsyste TO DO							
KAN-77 Run Test of Complete Syste To DO							
KAN-78 Iterations & Refinement for Complete System TO DO							
				lware plete	PDR	Sof	itware SVD
							. 39

Fall Schedule

Milestone	Estimated Timeline
Lunar ROADSTER V1	October First Week
Lunar ROADSTER V2	November First Week
Fall Validation Demo	November 3rd Week

Risk Summary

41

Reduced Risk Summary

42

Risk ID	Risk Title	Risk Owner	Risk	Тур	e:		Te	echn	ical	
R2	Excavator and grader tool planner takes longer than expected to deliver	Simson		5						\otimes
Description		Date Added	po	4						
Integration (of the excavator and grader software with hardware takes	11/27/2024	Likelihood							
longer than		Date Updated	Like	3						
		11/27/2024		2						Θ
Consequen	ce			1						
Unable to m	eet SVD deadline and potential requirements change				1	2		3	4	5
						(Conse	quer	nce	
									Date	
Action/Mile	stone	Success Criteria	D	ate	Plan	ned		lmp	leme	ented
Shift require	ments for SVD	Updated performance requirements		11/2	8/202	24		11,	/28/2	024
Integrate the	e grader during Fall semester	Working excavator and grader for FVD		11/2	8/202	24				
Potentially u CraterGrade	se off-the-shelf code if available, preferably from	Successful integration of off-the-shelf components								
		////								

Risk ID	Risk Title	Risl	< Ty	oe:		Technical				
R3	Integration issues between subsystems		_							
Descriptio		5								
Outro voto vo		11/27/2024	hood	4						
	s work individually, but integration and communication between ems are flawed	Date Updated	Likelihood	3						
		11/27/2024		2					\oplus	
Conseque	nce			1						
Delay in int	egration causing scheduling overruns, requirements change and	failure of the demo			1	2 C	3 onsequ	4 ience	5	
Action/Mil	estone	Success Criteria	Da	ite P	lann	ed	Imp	Date pleme		
Perform un	it testing and subsystem validation continuously	Successful testing of all major subsystems	r 11/30/2024			4				
Integrate o	ne subsystem at a time	Successful integration of all major subsystems	1	1/30	/202	4				
	mon framework (e.g. ROS2 interfaces) for communication by the bugs to reduce bugs	Adoption of common framework for communications	1	1/30	/202	4				
Keep to pla integration	nned schedule and have at least 5 weeks for testing and	Successful integration of all major subsystems	1	1/30	/202	4				

Risk ID	Risk Title	Risk	ς Τyμ	oe:		Schedule				
R6	Delay in arrival and manufacture of hardware components	William		_						
Description		5		-						
Chipping dol	ave of components and/or manufacturing delays on	11/27/2024	Likelihood	4						
	ays of components ordered and/or manufacturing delays on e components	Date Updated	ikeli	3						
		11/27/2024		2					\oplus	
Consequen	ce			1						
Delays in ha	rdware integration, causing push backs in scheduling and softw	vare development			1	2 C	3 onseque	4 ence	5	
Action/Miles	stone	Success Criteria	Da	te P	lanne	ed	Imp	Date leme		
Use off-the-s labs or Red's	shelf components that are available on hand (e.g. from CMU s workshop)	Obtain components before end of December								
	g and designing components during Winter break so there is eway for delivery and manufacturing before Spring semester	Obtain components before end of December	1	1/27	/2024	4				
	ons to work on software components while we wait for the to be delivered and/or manufactured	Successful integration of all subsystems on schedule								
	elay in wheels, work with the existing wheels and proceed with while waiting for the new ones to arrive.	Successful integration of all subsystems on schedule								

Risk ID	Risk Title	Risk	c Tvi	ne.		Technical				
R10		. I Y								
	Mast depth camera FOV is blocked		5							
Description		Date Added								
Mast depth	camera's FOV can be blocked, partially or completely, due to	11/27/2024	poor	4						
dust, misalig	nment of camera, or interference from the rover's own	Date Updated	ikelihood	3				<u> </u>)	
excavator as	ssembly	11/27/2024	Ξ	2						
Consequen	ce			1						
Hinders the	rover's ability to perceive its surroundings accurately, resulting	in navigation errors and			1	2	3	4	5	
nefficiencies	s in excavation tasks					C	Conseq	uence		
								Dat	е	
Action/Mile	stone	Success Criteria	Da	ite F	Plann	ed	Im	plem	ented	
Conduct fiel	d tests to choose an optimal height to place the depth camera	Visual data such as depth								
such that du	st does not reach it and it can clearly see in front of the rover,	perception and object								
despite the e	excavator assembly	detection is not compromised.								
		11//					-/	//		

Risk Title	Ris	ς Τγμ	be:		Techr	nical		
Too many performance requirements		_						
	Date Added		5					\bigtriangledown
at of porformance requirements and we may not be able to	11/27/2024	hood	4					
	Date Updated	ikeli	3					
	11/27/2024		2					\oplus
Consequence								
sting and validation, impacting project timelines and April SVD [Demo results			1	2	3	4	5
					С	onsequ		
stone	Success Criteria	Da	ite P	lanne	ed	Imp		
	Achievable Performance Requirements	1	1/28	/2024		12	/04/2	.024
Talk to CraterGrader and discuss what is feasible and what is not in the given time							/02/2	.024
	Project follows the schedule	1	1/28	/2024				
	ot of performance requirements and we may not be able to hem by April for SVD ce sting and validation, impacting project timelines and April SVD [stone d performance requirements separately for SVD and FVD on SVD)	Too many performance requirementsAnkitDate AddedDate AddedDate OpdatedDate UpdatedDate Updated11/27/2024CeSting and validation, impacting project timelines and April SVD Demo resultsStoneSuccess Criteriad performance requirements separately for SVD and FVD on SVD)Achievable Performance Requirementsregrader and discuss what is feasible and what is not in the ack schedule properly and team members have to push toProject follows the schedule	Too many performance requirementsAnkitDate AddedDate Added11/27/202411/27/2024Date Updated11/27/202411/27/2024Date Updated11/27/202411/27/2024CeInterpreting and validation, impacting project timelines and April SVD Demo resultsDate UpdatedStoneSuccess CriteriaDateDeformance requirements separately for SVD and FVD on SVD)Achievable Performance Requirements1reGrader and discuss what is feasible and what is not in the elineMeeting conducted1rack schedule properly and team members have to push to elineProject follows the schedule1	Too many performance requirementsAnkitAnkitDate Added11/27/20245ob of performance requirements and we may not be able to hem by April for SVD11/27/20241Date Updated11/27/20243cc11/27/20241sting and validation, impacting project timelines and April SVD Demo resultsDate Pd performance requirements separately for SVD and FVD on SVD)Achievable Performance Requirements11/28trGrader and discuss what is feasible and what is not in the elineMeeting conducted11/28track schedule properly and team members have to push to elineProject follows the schedule11/28	Too many performance requirementsAnkitDate Added11/27/2024Date Updated11/27/2024Date Updated11/27/2024Date Updated11/27/2024Ce11/27/2024Sting and validation, impacting project timelines and April SVD Demo resultsDate PlanneStoneSuccess CriteriaDate PlanneDate performance requirements separately for SVD and FVD on SVD)Achievable Performance Requirements11/28/2024Achievable Performance regrader and discuss what is feasible and what is not in the elineMeeting conducted11/28/2024Too many performance requirements11/28/202411/28/2024	Risk TitleRisk OwlerRisk OwlerRisk Type:Too many performance requirementsAnkitDate Addedbot of performance requirements and we may not be able to hem by April for SVD11/27/2024Date Updated11/27/2024Ce11/27/2024sting and validation, impacting project timelines and April SVD Demo resultsDate Plannedd performance requirements separately for SVD and FVD on SVD)Achievable Performance Requirements11/28/2024ack schedule properly and team members have to push to elineProject follows the schedule11/28/2024	Risk TitleRisk OwlerRisk Type:Too many performance requirementsAnkitDate Addedbot of performance requirements and we may not be able to nem by April for SVD11/27/2024Date Updated11/27/2024to ce11/27/2024sting and validation, impacting project timelines and April SVD on SVD)Date Cess CriteriaDate PlannedDate Plannedd performance requirements separately for SVD and FVD on SVD)Achievable Performance Requirements11/28/2024d performance requirements separately for SVD and FVD on SVD)Achievable Performance Requirements11/28/202412ack schedule property and team members have to push to elineProject follows the schedule11/28/202412	Risk TitleRisk OwnerRisk OwnerRisk Type:Too many performance requirementsAnkitDate Addedot of performance requirements and we may not be able to nem by April for SVD11/27/2024Date Updated11/27/2024Date Opdated11/27/2024Date Opdated11/27/2024Date Opdated11/27/2024Date Opdated11/27/2024Date Opdated11/27/2024Date Opdated11/28/2024Date PlannedImplementsat performance requirements separately for SVD and FVD on SVD)Achievable Performance RequirementsrGrader and discuss what is feasible and what is not in the elineMeeting conducted11/28/202411/28/202411/28/202411/28/202411/28/2024

Risk ID	Risk Title	Risk Owner	Туре	Description	Consequence	Risk Reduction Plan												
	PRL Testbed	Archite	O de a de litera	PRL Testbed unavailable due to	No testbed available for testing	Devise and discuss a testing and demo plan with Red and other stakeholders of the PRL testbed beforehand and reserve slots												
R1	Scheduling	Ankit	Scheduling	scheduling conflicts with other high priority projects	and/or SVD	Reach out to external testing facilities like Astrobotic or CAT for a backup testing facility												
						Schedule tests at night												
	Excavator and grader					Shift requirements for SVD												
R2	tool planner takes	Simson	Technical	Integration of the excavator and grader software with hardware takes	Unable to meet SVD deadline and potential requirements	Integrate the grader during Fall semester												
	longer than expected to deliver			longer than expected	change	Potentially use off-the-shelf code if available, preferably from CraterGrader												
									Perform unit testing and subsystem validation continuously									
				Subsystems work individually, but	Delay in integration causing	Integrate one subsystem at a time												
R3 I	Integration issues between subsystems	Deepam	Technical	integration and communication between the subsystems are flawed	scheduling overruns, requirements change and failure of the demo	Use a common framework (e.g. ROS2 interfaces) for communication between subsystems to reduce bugs												
						Keep to planned schedule and have at least 5 weeks for testing and integration												
	Belly depth sensor is			The belly depth camera is used to validate if a groomed crater is	Will result in major revision and changes to the validation	Mount the depth camera at another location on the rover (e.g. on a mast)												
R4		Bhaswanth Technical sat	Bhaswanth Technica	Bhaswanth	Bhaswanth	Bhaswanth	Bhaswanth	Bhaswanth	Bhaswanth	Bhaswanth Te	Bhaswanth T	Bhaswanth	Bhaswanth	Bhaswanth Te	th Technical	satisfiable. The sensor may not be able to adequately determine depth	architecture and functional requirement, causing delays in	Use another sensor to determine depth variations (e.g. LIDAR, visual odometry, IR sensor)
				variations suitable for validation	scheduling	If all else fails, use the total station for validation												

Risk ID	Risk Title	Risk Owner	Туре	Description	Consequence	Risk Reduction Plan
				Our rover builds on top of the work accomplished by Crater Grader. If we		Thoroughly go through Crater Grader's code and the mechanical schematics provided
	Unable to get Crater Grader to perform	Bhaswanth	Technical	cannot get Crater Grader to perform autonomous crater filling, we may	Extra time commitment to start from scratch or obtaining a suitable	Test each component and wiring to see if they are working
	autonomous crater filling			need to spend more time working on the navigation stack and designing the entire pipeline	replacement	If it is still not working, inherit only the software component from Crater Grader and build hardware ourselves
						Use off-the-shelf components that are available on hand (e.g. from CMU labs or Red's workshop)
				Shipping delays of components	Delays in hardware integration,	Start ordering and designing components during Winter break so there is adequate leeway for delivery and manufacturing before Spring semester starts
R6	Delay in arrival and manufacture of hardware components	William	Schedule	ordered and/or manufacturing delays on custom made components	causing pushbacks in scheduling and software development	Use simulations to work on software components while we wait for the components to be delivered and/or manufactured
						Implement other subsystems that are independent from the subsystem that is missing parts
						In case of delay in wheels, work with the existing wheels and proceed with the timeline while waiting for the new ones to arrive.
				Inability to accurately simulate the	The rover's performance in the	Ask CraterGrader how they ran all their simulations and gather resources
R/ 1	Lack of proper simulation environment	Simson	Technical	rover in a Lunar-like environment can lead to suboptimal performance	Moon Pit may be compromised, leading to inefficiencies, mission delays, or potential failure in achieving key objectives	Explore LunarSim - https://github.com/PUTvision/LunarSim and check how useful this will be, during the winter break
						Develop Gazebo environment

Risk ID	Risk Title	Risk Owner	Туре	Description	Consequence	Risk Reduction Plan
R10	Mast depth camera FOV is blocked	William	Technical	Mast depth camera's FOV can be blocked, partially or completely, due to dust, misalignment of camera, or interference from the rover's own excavator assembly.	Hinders the rover's ability to perceive its surroundings accurately, resulting in navigation errors and inefficiencies in excavation tasks	Conduct field tests to choose an optimal height to place the depth camera such that dust does not reach it and it can clearly see in front of the rover, despite the excavator assembly. Ensure that visual data such as depth perception and object detection should not be compromised
				We have a lot of performance	Delays in testing and validation,	Have revised performance requirements separately for SVD and FVD (focus more on SVD)
R11	Too many performance requirements	Ankit	Technical, Schedule	requirements and we may not be able to meet all of them by April for SVD	impacting project timelines and April SVD Demo results	Talk to CraterGrader and discuss what is feasible and what is not in the given time
						PM should track schedule properly and team members have to push to meet the timeline
				The transmission and steering		Thoroughly check the Crater Grader's assembly and carry out maintenance of any worn-out parts
R12	Drive system wear-and-tear causes malfunction	Deepam	Technical	assembly might be worn out, leading to suboptimal vehicle dynamics, and potentially mechanical failure	Rover drive system fails and may require a lot of repair and maintenance	Completely replace the assembly parts with the same/similar new parts for better performance and reliability
						Added limit switches to avoid steering gears to operate beyond their limits
				Due to significant sand manipulation,		Design proper sand enclosures and mounts for sensitive components
				the flying sand/dust can enter and accumulate over sensitive electronics	Component failure during testing	Review placement of components
R14	Dust ingress	William	Technical, Cost	(PDB, drivers, Arduino) and sensors (cameras, IMU), leading to	or demonstrations. Highly inhibits all future scheduled tasks	Review scale and speed of sand manipulation to eliminate root-cause of flying sand/dust
				component failure or incorrect sensing		Allocate contingency budget and order spares of the sensitive components in case of component failure

....

Risk ID	Risk Title	Risk Owner	Tuno	Description	Concortionoo	Risk Reduction Plan
KISK ID	KISK Hüe	Owner	Туре	Code modifications or config parameter changes during testing	Consequence	Implement GitHub version control to store and retrieve the best versions of code and configuration
R16	Code version control	Simson	Technical	might not be saved, affecting the final demo. Reverting to a stable version is difficult if changes do not work as expected.	Delay in code integration and implementation	Use Google Drive to backup important documentation explaining setup processes
R19	Items missing	Ankit	Logistics	Critical project items may go missing if not stored properly or tracked. Items may be misplaced or	Delay in hardware	Maintain an inventory tracking spreadsheet
K19		ΑΠΚΙ	Logistics	borrowed without proper logging	implementation	Include spare inventory
	Sensor ROS packages		Technical,	Finalized sensors might lack compatible ROS packages, leading	Delay in software implementation	Perform trade studies to pick sensors that are compatible with ROS versions before finalizing
I R20	not available	William	Schedule	to delays or significant changes in the software architecture		Select sensors and ROS versions that minimize potential conflicts
R23	Lunar-accurate cut/fill regions are not	Simson	Technical	The rims of the craters may not be enough to fill the whole crater. Going to a different region to carry the	The basic assumption of sand availability fails. We may need to rethink the basic concept of tool	Accurately create the environment and assess if the rims are enough to fill
	possible to groom			sand to the crater may prove to be inefficient	planner to fit the new parameters of the environment	If not, modify PRs accordingly

Risk ID	Risk Title	Risk Owner	Туре	Description	Consequence	Risk Reduction Plan
R24	Sensor data is too noisy to fulfill performance requirements		Technical	Performance requirements are tough and ambitious, sensor noise may prevent us from achieving it	performance requirements may cause us to lose marks in the	Relax the performance requirements enough to ensure that they are achievable
						Ensure enough testing time to tune parameters
	Off-the-shelf wheels don't interface with the rover	Ankit	Technical	No off-the-shelf wheels fit the rover, We'll have to redesign wheel hubs	not meeting one of the non-functional requirements	Shift requirements to FVD
						Good enough market research to see find the best fit, with least amount of changes

ANY QUESTIONS

Thank You!

https://mrsdprojects.ri.cmu.edu/2025teami/

Appendices

A.1. Derivation for P.5:

- Chang'e-4's landing site was surveyed and found that 97.5% of nearby craters were below 15.5 meters in diameter.
- Our rover is approximately 1/30th the size of a commercial grader, so it shall be able to grade 15.5/30 \approx 0.5 meter craters at least.
- Source: DOI 10.3390/rs14153608

A.2. Derivation for P.3:

- Average depth-to-diameter (DtoD) ratio of 0.07 near the North pole
- Assuming worst-case scenario of a crater with twice DtoD ratio of 0.14, the gradient is θ = arctan(0.14*2) \approx 15 degrees
- Contact pressure requirement follows recommendation from NASA
- Source: DOI 10.1029/2022GL100886, NASA/TP-2006-214605

A.3. Derivation for P.1:

- Recommendation from Nature paper on extraterrestrial path-planning metrics
- Source: DOI 10.1038/s41598-023-49144-8

Credits for images:

- Generative AI
- Google Images
- Dr. William Red Whittaker's slides

