

Robot Pixel Art

Team Copypasta

Bhaswanth Ayapilla, Daksh Adhar, Parth Singh and Sreeharsha Paruchuri

04.22.25

Motivation and Problem Statement

Problem Statement:

Given an input image, use the system to generate an 8x8 grid representation of it with a fixed set of colours and use the arm to stamp the image while optimizing for the total time taken.

Motivation:

- Explore classical planning algorithms
- Understand the challenges associated with time optimization
- Utilize accurate planning and impedance control algorithms
- Cool robot art!

Approach

Input:

A square image of any resolution (up from a fixed resolution)

Major Systems:

- 1. Input image processing
- 2. State machine
- 3. Motion planner TSP
- 4. Low Level FrankaPy motion planner

Output:

An 8" x 8" pixel art image in the least possible time!

Travelling Salesman Problem

- Goal is to find the shortest possible route that visits a set of nodes and returns to the starting node
- NP Hard Problem
- In our case, each pixel corresponding to one color is the node... How do we TRAVEL these nodes in the shortest time?
- We solve this problem by using CHRISTOPHIDES ALGORITHM which is a approximation algorithm
 - Connect all nodes with cheapest edges (MST).
 - Find shortest edges to pair up odd nodes
 - Walk without repeats, using shortcuts if needed

Minimum Viable Product

Stamping procedure for a single pixel

Go to pre-grasp pose Pick up stamp Go to pre-stamp pose Dab on the ink pad Go above pixel pose Dab after every 1 stamp Stamp the grid Go to home after every 9 stamps Replace the stamp

Input:

A 1200x1200 pixel minecraft creeper

This is a good test case given the various colours involved in the query image

Stamping Mechanism:

MVP System

Stamping Video

54 minutes

Blockers

- Can't test frequently with all ink colours as they dry out quickly
- The stamp material doesn't absorb the ink well enough for multiple stamp actions in a row, have to dab in the ink after every 3 stamps
- Long runtime for a single pixel art (~50 minutes for 8x8)
- Stamp does not lay flat on the board (Rubber material not sponge)
- Unfaithful goto_pose results in an offset between columns 5,6

Future Steps and Goals

- Track the location of ink pads in real time with aruco tags
- Visual feedback from the realsense to verify pixel stampage and retry stamping that pixel if needed
- Utilising force control to get consistent stamping quality on the pixel grid
- Dab on the stamp pad after every 3 stamps instead of 1 for faster pixel art completion

Intel RealSense Communication

Hardware:

- Intel RealSense depth camera
- ArUco tags strategically placed near pads

Workflow:

- RealSense camera detects and tracks
 ArUco tag positions and orientations
- Calculated poses inform the Panda arm where to precisely:
 - Pick up stamps
 - Dab stamps onto designated pads

Thank You

Questions?

Stamping Video

