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Abstract— The travelling salesman problem is a classical ex-
ample of a combinatorial problem and presents itself in various
forms in the real-world, from room rearrangement to air traffic
control. In this project, we explore its role in autonomously
generating pixel art with a Franka robot. To achieve this result,
we adopt a stamping mechanism which incrementally generates
an image on the whiteboard placed below the robot arm. To
generate the grid version of the input image, we develop an
algorithm to classify the colour of each region in the desired
grid. Moreover, the task demands accurate motion planning,
force regulation and reliable stamping mechanism. To achieve
efficient task execution, we address planning challenges such
as colour-based stamp grouping and minimise arm travel using
Travelling Salesman Problem (TSP) optimisation, specifically
employing Christofides’ algorithm. The system’s variability is
explored across three dimensions: input patterns, stamping
grid resolution (demonstrated with 4x4 and 8x8 grids), and
environmental adaptability to changes in ink pad locations.
This work highlights the potential of robotic manipulators in
executing intricate artistic applications with adaptability and
precision.

I. INTRODUCTION

Robotic arms have become increasingly adept at
performing fine motor tasks traditionally reserved for human
operators. Among these, artistic applications—such as
painting, calligraphy, and stamping—pose unique challenges
due to the need for precise force control, repeatability, and
interaction with deformable surfaces.

Our work introduces the use of a robotic manipulator
to create pixel art autonomously through a stamping
mechanism. The aim is to demonstrate the ability of
manipulators to perform precise and repeatable artistic tasks
through visuo-motor control. We utilize the arm to pick up
stamps, apply ink from a stamp pad, and imprint patterns
onto a flat whiteboard to generate pixelated images. This
process requires accurate motion planning, force regulation,
and sequential stamping to recreate digital designs faithfully.
Additionally, we are integrating a vision system to ensure
the precise placement of each stamp and to compensate for
variations in ink transfer.

To ensure efficient task execution, we address key
planning challenges such as grouping stamps by color,
minimizing arm travel using Traveling Salesman Problem
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optimization, and managing ink replenishment during
stamping. To solve the TSP efficiently, we use Christofides’
algorithm [4], which offers better tour quality guarantees
compared to simpler heuristics like Nearest Neighbor or
Greedy Insertion[5].

We are exploring the variability of the system in three key
aspects:

• Input Variability: The robot can be tasked with stamp-
ing different patterns and coloring various articles, al-
lowing for a diverse range of artistic outputs.

• Grid Resolution: The resolution of the stamping grid
can be modified, enabling finer details in pixel art. For
instance, our demo uses an 8×8 grid, and can be scaled
up to higher grid dimensions as well.

• Environmental Adaptability: The system can adjust
to changes in its environment, such as variations in ink
pad locations, ensuring robustness in dynamic setups.

II. RELATED WORK

In this section, we provide an overview of related work
on robotic painting technology and vision-guided painting.

Research from Carnegie Mellon University’s Robotics
Institute demonstrates how their system, Framework and
Robotics Initiative for Developing Arts (FRIDA), uses
AI to prepare images for robotic painting [1]. While not
specifically focused on pixel art, the methodology provides
valuable insights into image processing for robotic art
production. The system can accept text prompts or image
examples as input, then generates appropriate painting.

A related study on vision-based pen-and-ink drawing by a
robotic manipulator provides a framework where the system
first extracts the outlines from an image and delineates them
with different width strokes according to their structural
importance [2]. This methodology could be adapted for
pixel art by modifying the extraction algorithm to generate
pixel-appropriate grid patterns rather than continuous lines.

Complementing AI-driven techniques, 3D vision technol-
ogy enables highly precise robotic painting. Several research
teams have developed systems for automating art creation
on canvas using 3D vision-guided robots. These systems
can provide 1:1 replicas of original paintings while ensuring
complete precision and consistency [3]. A notable imple-
mentation involves a collaborative ABB robot equipped with



a Photoneo MotionCam-3D Color camera to create precise
replicas of original artworks through a structured workflow:
• Digitization and processing of the reference image
• Vision-guided scanning of both color palette and canvas
• 3D spatial mapping of the working environment
• Precise execution of the painting process

The system’s 3D vision capabilities enable the robot to
understand depth relationships and surface characteristics,
allowing for more natural brush movements and paint
application techniques.

III. METHODOLOGY
The forward process begins with a predefined image

which can unambiguously be down-sampled into an
8x8 grid of pixel colours that fall into one of the five
predefined categories - Red, Green, Blue, Black and
White through a simple python script. The output of
the aforementioned module consists of a list of 64 grid
locations and corresponding colours. This list is then fed
to the planning algorithm which optimally sequences the
inpainting of grid locations in the robot base frame with
the assigned colour in order to optimize for time taken.
Moreover, this sequence is augmented with a ’stamp re-ink’
waypoint after every step in order to re-coat the stamp pad
with ink. This process has been experimentally verified to
ensure proper coloring on the whiteboard without the ink
density of the coating on the stamp reducing leading to a
visually faded colour. Next, this sequence is then passed on
to the motion planning block, which executes the plan by
moving the end effector to each of the pixel locations as
well as picking up the stamp and re-inking it.

It is important to ensure that the end-effector remains
perpendicular to the stamping surface to ensure that the
square shape is properly imprinted and the area is filled in
a consistent manner. In order to achieve this, once every
9 stamps, the planner signals to return the stamp to its
initial location and reset all joint values. This sends the
manipulator to its predefined ’home’ position which is
useful to us as it orients the joint angles in such a way that
the end-effector is perpendicular to the stamping surface
below it. Once the robot executes this step, it resumes
stamping according to the generated plan. This sums up
the ability of the robot to autonomously make decisions
regarding sequencing the waypoints derived from the input.
Variability is introduced through ArUco tags placed on the
stamp pads, which are detected by the overhead world-frame
camera. The camera identifies the position of each pad
and provides this information to the planner, allowing it to
determine which color to start with or select next.

The reset process involves returning the stamps to the
initial, hard-coded, locations and the robot arm retracting to
a home location well above the generated pixel-art image.

Fig. 1. Hardware Setup with Marked Placeholders

A. Hardware Setup

The hardware setup for this project is shown in figure 1
and the annotated components are labelled in table I. Our
setup involves a Franka Panda robot arm which serves the
role of the artist for painting the pixel art and the pixel grid,
where the artwork is created, is positioned at the center of
the arm’s workspace, that is, directly below the end-effector.
To paint the 8×8 pixel grid on the whiteboard surface, we
have replaced the paint brush with 4 stamp rubbers (red, blue,
green and black) which are attached to a custom 3-D printed
holder that the manipulator can grab onto via the Franka
Hand to perform the desired stamp operations. To refill the
stamps with ink, on the right side of the workspace as seen in
the figure 1, there are 4 ink pads corresponding to the stamp
colors. The ink pads can be repositioned freely, provided
they remain within the virtual wall constraints defined by
FrankaPy. ArUco tags affixed to the pads are used to detect
their locations, which are then supplied to the planner as
input.

TABLE I
HARDWARE SETUP COMPONENTS

S.No. Component
1 Franka Emika Panda Manipulator
2 Intel Realsense D435i Camera
3 4 Different Coloured Stamps
4 8x8 Pixel Grid
5 4 Different Colored Ink Pads

B. Input Processing Subsystem

Our input processing subsystem reads a .png file as
an input which it converts into an n × n grid of colours
where ’n’ is a user-defined input. We define it to be 8
for our task as this value respects the virtual walls of the
Franka Arm and runs within a time limit that’s suitable for
demonstration. Each grid cell has properties that define its
location in the 3D world, as defined by the robot base-frame,
and a capital letter denoting the classified colour of the cell.



So, from an d × d × 3 RGB image we go to an n × n ×
4 grid where the 4 dimensions are denoted by X,Y,Z,C.

The classification process operates in the HSV color
space, using predefined color ranges to ensure robustness
against lighting variations. Each grid cell is mapped to
real-world spatial coordinates using a scaling factor that
converts pixel measurements into metric units. A constant
Z-height is maintained across all grid locations to preserve
a uniform reference plane, we set its value to 2cm through
experimental validation. The intuition behind this value is
grounded in the fact that an impedance controller will try
to go to a desired location and will exert force into the
environment in order to reach the waypoint. Setting the Z
value to 2 centimeters allows for the stamps to be pressed
into the stamping surface with adequate enough force to
transfer ink from the stamp onto the stamping surface.
Once we have computed the X,Y displacement of one of
the corners of the grid cells in the robot base frame as
a simple, the center of each grid cell can be computed
in the robot base frame as a simple addition of the grid
dimension in X and Y. This displacement was computed
using the guide mode.py script - moving the end effector to
the centroid of closest corner grid cell to the robot base.

To enable processing by the Task Planning subsystem,
the output of this script is saved as a .npy binary file that
preserves the grid structure of the intended output.

C. Task Planner

The task planner defines the high-level sequence of actions
required to complete the pixel art stamping efficiently. After
the input processing subsystem provides the set of pixel
locations along with their target colors, the task planner
groups the pixels by color and determines the order in which
the colors are processed. To decide the color ordering, the
robot computes the Euclidean distance from its predefined
home pose to the corresponding stamp pad positions. The
positions of the stamp pads are tracked using ArUco tags,
allowing them to be placed arbitrarily within the workspace
while still enabling efficient planning. The colors are then
sorted based on ascending distance to reduce unnecessary
movements across the workspace.

For each color, the robot performs the following sequence:
it first picks up the corresponding stamp tool from the
stamp rack, dabs it onto the ink pad to load ink, and then
proceeds to stamp all pixels of that color. To minimize the
total travel distance when stamping pixels of the same color,
we pose the problem as a Traveling Salesman Problem
(TSP). Given that finding the exact TSP solution is NP-hard
[6] and computationally expensive, we apply Christofides’
algorithm [4], a polynomial-time approximation method
that guarantees a solution within 1.5 times the optimal tour
length. Christofides’ algorithm works by first constructing a
minimum spanning tree over the pixel locations and then

Fig. 2. Robot Gripping the Stamps

connecting them to form a near-optimal cycle. We use the
Christofides implementation from the NetworkX library to
generate this approximate tour efficiently at runtime.

Algorithm 1 Traveling Salesman
1: procedure TRAVELINGSALESMAN(startPosition,

pixels)
2: Initialize graph G
3: points← extract (x,y,z) from each pixel
4: for each point i in points do
5: Add node i to G
6: end for
7: for each pair (i, j) do
8: Add edge with Euclidean distance as weight
9: end for

10: startIdx← index of closest point to startPosition
11: tspCycle← Christofides(G)
12: Reorder tspCycle to start from startIdx
13: return pixels ordered by tspCycle
14: end procedure

After completing the stamping of one color, the robot
places the stamp back in the stamp area, returns to the
home position and transitions to the next color, repeating
the procedure until the entire pixel art is completed.

D. Motion Planner

The motion planner is responsible for converting the
high-level sequence of the task planner into precise
robotic movements. After the color to be stamped
is decided by the task planner, the local control
functions such as the move to pad(), to guide the
robot to ink pads, move to stamp(), the location
of stamps, move to pixel(), pixel locations, and ,
return to stamp(), back to stamps, are implemented
using the FrankaPy library and ROS. These functions
leverage position and force control of the Panda robot.
Each movement involves calculating approach and retract
poses using RigidTransform objects. For example, as
seen in the video, for one stamp motion the robot goes



to a pre-grasp pose which is 5cm above the actual stamp
pose, using position control. It then moves linearly down
the z-axis to the stamp and picks it up by closing the
gripper, this motion is achieved by impedance control.
Subsequent actions—such as dabbing the stamp onto the
ink pad and pressing it onto the paper grid—are similarly
split into a pre-grasp approach followed by a linear motion,
both executed using force control. Force control is used
consistently during all stamping interactions involving
contact with the ink pad or paper to ensure uniform and
complete stamping results.

Force-controlled stamping is achieved where the end ef-
fector applies downward pressure with specific cartesian
impedance settings:

cartesian impedances = [2000,2000,1000,100,100,100]

This ensures that we achieve stable interactions with de-
formable surfaces like the stamps and ink pads. The script
orchestrates the overall execution by initializing the robot’s
home pose and loading pixel goals from an input image.

IV. EVALUATION

To evaluate the performance and effectiveness of our
pixel art system, we ran a few experiments focused on how
accurate, effective and robust the stamping process is. These
tests were designed to see how close we could get to the
intended design, the overall time taken, and how well the
system handled different setups.

A. Output Quality

We tested the system on several input images, from very
simple colored sequences of low resolution such as 224 x
224 to more complex complete image structures of higher
resolution such as 1200 x 1200, such as the Minecraft
Creeper as shown in Fig 3. In all cases, the robot was able
to stamp very close to the center of each grid cell, with only
a few minor deviations, usually no more than 3mm off. The
colors matched well, though we did notice that after a few
stamps, the color intensity faded because of the ink pads
drying up.

We also tested the system with both 4×4 and 8×8 grids.
The 4×4 version finished in around 20 minutes and looked
good for basic patterns. The 8×8 grid took about 54 minutes
but gave much finer results and showed that the system can
scale up if needed. The added detail made the final pixel
artwork look a lot more crisp.

Fig. 3. Input image compared to the the pixel art output

B. Task Planning Efficiency

To see if our planning approach made a difference, we
compared our Christofides’ TSP-based path to a simple
”go row-by-row” strategy. Across multiple runs, Christofides
consistently reduced the robot’s travel distance between
pixel locations by around 38%. This implies lesser time is
spent moving around and lesser stress on the Franka arm
itself. This motion also looks more seamless with fewer
unnecessary zigzags.

C. Re-inking Strategy

Right now, we re-ink the stamp after every three stamping
actions. We tested whether that was the right frequency by
printing without re-inking for longer stretches. After a few
stamps, the ink usually starts to fade, confirming that 3 is a
good number. However, this makes the entire process slower
and it would be better to stamp after every 5 or even 10
stamps, which would require us to change the stamping
material itself. Moreover, some stamp materials hold ink
better than the others, so better hardware could help improve
efficiency in the future.

D. Repeatability and Robustness

We ran the same stamping task three times in a row
to see how consistent the entire system was. The results
looked almost identical each time, which was a great sign.
The stamp positions stayed accurate and the robot didn’t
miss any pixels. The only noticeable difference was in the
ink intensity, which varied slightly due to drying up.

To further evaluate adaptability, we repositioned the ink
pads prior to execution and re-ran the task. The results
demonstrated that vision-based tracking significantly en-
hances the system’s robustness and flexibility.

E. Verification

To enhance the reliability of the stamping process, we
plan to integrate a verification step using the overhead table-
mounted camera. This module will perform post-stamping
inspection by analyzing the final artwork pixel by pixel. Each
stamped pixel will be evaluated on the basis of the proportion
of the grid cell covered with the intended color versus
unmarked (white) areas as observed from the viewing angle
in 4. A pixel will be considered successfully stamped if the
color coverage exceeds a predefined threshold. Otherwise,
the pixel will be flagged for re-stamping. The robot will then
revisit and re-stamp all flagged locations. This verification



Fig. 4. RealSense camera view

and correction loop will continue until all pixels meet the
success criteria. Implementing this step will significantly
improve output consistency and reduce the impact of faded
ink or minor misalignments over long runs.

V. CHALLENGES

A. Control Methods

Initially, we attempted to use impedance control by
specifying target poses slightly beneath the table surface
to ensure full contact between the stamp and the board.
However, this led to unintended behavior—since the robot
could not physically reach the specified pose due to
the table, it tilted aggressively in an attempt to comply,
compromising the stamp angle and quality.

As a fallback, we adopted a Cartesian control approach,
which allowed us to complete the tasks but with limitations.
Notably, the end-effector does not maintain a vertical orien-
tation during movement. Once the basic implementation was
completed, we shifted to force control methods to trul make
our system robust.

B. Hardware

One of the most persistent issues was ink drying. Since
the ink pads dry out quickly, especially for less-used colors,
frequent re-inking was required to maintain color intensity.
Moreover, the rubber stamp material currently in use does
not retain ink well across multiple stamps—it typically
fades after 1–2 actions. This forced us to re-ink nearly
every time, slowing down the overall process. A sponge or
velvet based stamping material was then implemnted which
increased our re-inking step from one to three.

Another hardware limitation was that the stamp did not
lay flat on the surface during contact. This was a result of
both imperfect approach trajectories and the rigid nature of
the stamp. Consequently, some parts of the stamp did not
touch the board fully, causing incomplete prints. We solved
this by adding a foam based pad at the ends of the stamp.
This meant that a better contact could be established and the
ink could print better on paper.

C. Stamping Time

The overall time taken to complete a single pixel art
is currently quite high—around 54 minutes for an 8× 8
grid. This is due to the combined effects of pixel re-inking,
long path traversal, and sequential stamping logic. While
our Christofides-based task planning helps reduce travel
distance, it does not fully compensate for the overhead
caused by hardware limitations. The high runtime also limits
how frequently we can test with full setups, especially since
ink drying and mechanical fatigue introduce inconsistencies
over time.

VI. FUTURE WORK

Future versions could work on improving the stamping
quality of our current setup. This mostly depends on getting
better hardware - specifically stamps that are made of better
material. As a result, we would expect to see ink remain
on the stamp for more than three ’dab’ action and thus we
would be able to re-dab at a lower frequency which will
bring down the time taken for the process. Additionally,
whiteboard inks that are denser in nature can be used which
will allow the entire stamp to be coated uniformly with ink,
resulting in well-defined square stamps on the whiteboard.
Together, the above improvements can make the system
more time-efficient.

Moving forward, we can look to incorporate visual
feedback into our system. Either for added variability in
detecting using Aruco markers where the stamp pads or
to perform validation followed by error correction. This
would make the system more reliable for all possible output
resolutions.

Another promising direction is improving motion
planning. While Christofides’ algorithm has significantly
reduced travel distance, it does not currently optimize for
end-effector orientation or avoid contact-induced drift. We
plan to explore task-space motion planning with constraints
that maintain vertical alignment of the stamp and incorporate
trajectory smoothness for faster, more efficient execution.

We can also look into generalizing our system to handle
arbitrary image inputs with dynamic grid resolutions and
color sets. This would involve automated preprocessing
to convert any image into stampable pixel art, as well as
dynamic color management and on-the-fly assignment of
available inks. Together, these upgrades would make the
system fully autonomous and scalable for larger, more
complex designs.

Finally, another potential direction can be integrating
learning-based optimization for adaptive stamping. By col-
lecting data over multiple stamping runs—including force
profiles, stamp quality metrics, and execution times—a learn-
ing model could be trained to fine-tune parameters such
as approach speed, force thresholds, and re-dab frequency



based on real-time context. This would enable the system to
autonomously adapt to variations in stamp material wear,
ink consistency, or surface conditions, thereby improving
performance without manual recalibration. Over time, such a
feedback-driven learning loop could lead to more consistent
stamp quality and further reductions in execution time.

VII. CONCLUSION

This work demonstrates the feasibility and versatility of
using a Franka Emika Panda robotic arm to autonomously
generate pixel art through adaptive stamping. By integrating
robust vision-based input processing, efficient task plan-
ning using Christofides’ algorithm for TSP optimization,
and precise force-controlled motion execution, our system
achieves consistent and repeatable artistic outputs across
varying grid resolutions and environmental configurations.
The experimental results highlight both the accuracy of the
stamping process and the substantial reduction in robot travel
distance compared to naı̈ve planning strategies, validating the
effectiveness of our approach.

Despite hardware limitations-such as ink retention and
stamp-surface contact-our iterative improvements, including
material changes and vision-based adaptability, have en-
hanced output quality and system robustness. The mod-
ular design also allows for straightforward extension to
higher grid resolutions, arbitrary input images, and dynamic
workspace layouts.
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