Lunar ROADSTER (Robotic Operator for Autonomous Development of Surface Trails and Exploration Routes)

"Starting with a foothold on the Moon, we pave the way to the cosmos"

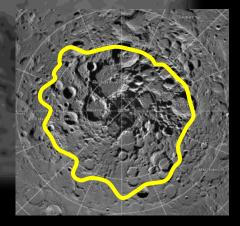
Ankit Aggarwal

Deepam Ameria

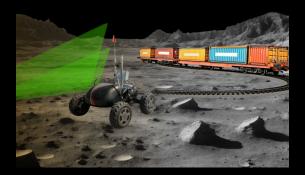
The Team

Bhaswanth Ayapilla

Simson D'Souza



Boxiang (William) Fu



Dr. William "Red" Whittaker

Motivation: The Lunar Polar Highway

Is it possible for a solar-powered rover to repeatedly drive around the Moon and never encounter a sunset?

Motivation: The Lunar Polar Highway

Sun-synchronous circumnavigation around Moon at 28 days x 24 hr = 672 hour sun rotation

At	eq	uatoi
At	50	deg
At	60	deg
At	70	deg
At	75	deg
At	80	deg
At	81	deg

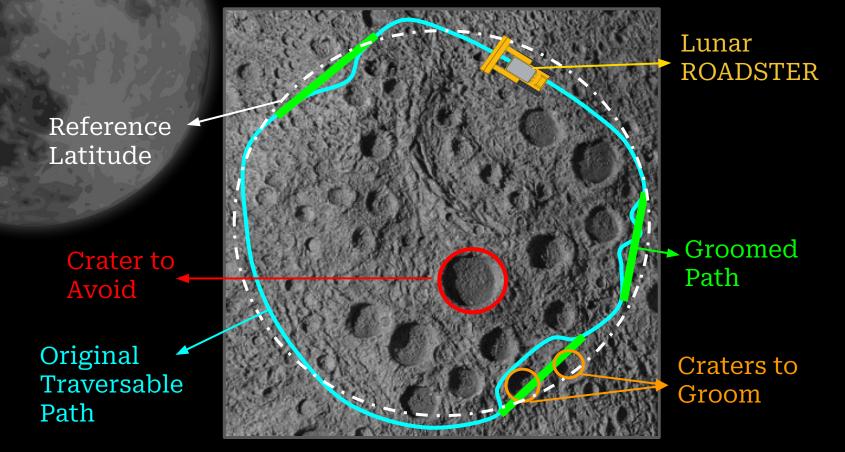
11,000 km 7,040 km 5,500 km 3,700 km 2,800 km 1,870 km 1,529 km

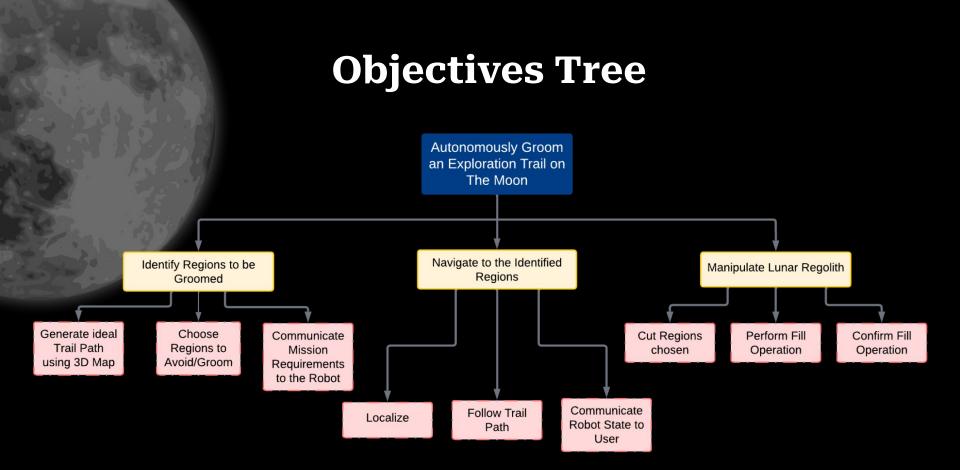
16 kph 10 kph 8 kph 6 kph 4 kph 3 kph 2.5 kph

Jogging speed if the route was flat, circular and traversable

The Project: Lunar ROADSTER

An autonomous **moon-working** rover capable of finding ideal exploration routes and creating traversable surface trails.


By grooming trail paths, rovers with less traversing capabilities will be able to travel at higher speeds and higher power efficiencies.


A traversable and circuitous trail path will allow rovers to maintain sun-synchronicity, thereby allowing machines to run for much longer.

The groomed trails will become the backbone for colonization of the Moon by enabling transportation, logistics and enterprise development.

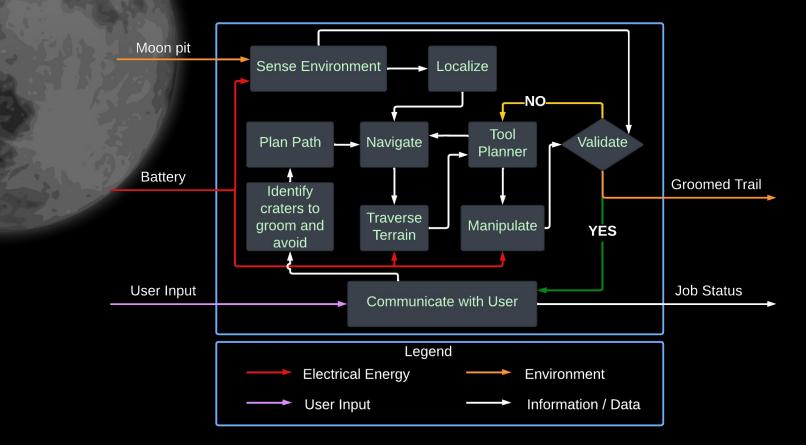
Use Case: Circular Path Grooming

Functional Requirements (Mandatory)

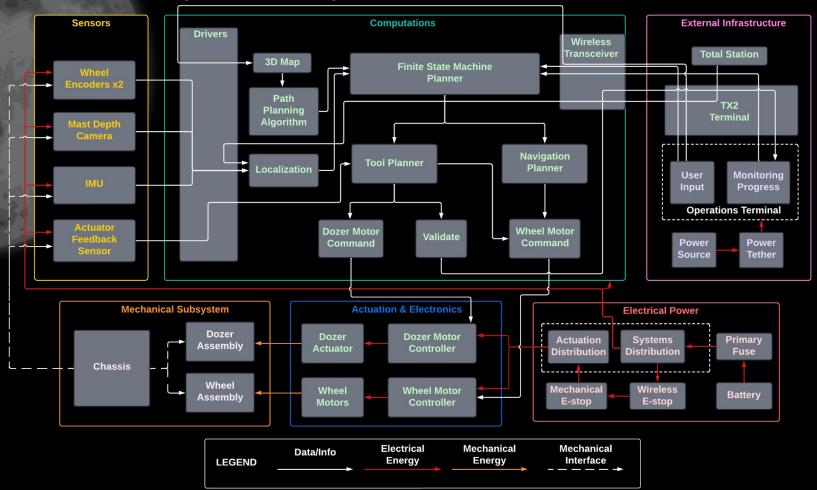
Sr. No.	Mandatory Functional Requirement
M.F.1	Shall perform trail path planning
M.F.2	Shall operate autonomously
M.F.3	Shall localize itself in a GPS denied environment
M.F.4	Shall navigate the planned path
M.F.5	Shall traverse uneven terrain
M.F.6	Shall choose craters to groom and avoid
M.F.7	Shall grade craters and level dunes
M.F.8	Shall validate grading and trail path
M.F.9	Shall communicate with the user

Non-Functional Requirements (Mandatory)

Sr. No.	Parameter	Description
M.N.1	Weight	The rover must weigh under 50kg
M.N.2	Cost	The cost for the project must be under \$5000
M.N.3	Computing Capacity	The onboard computer should be able to <mark>run all required tasks</mark>
M.N.4	Size/Form Factor	The rover should measure less than 1m in all dimensions

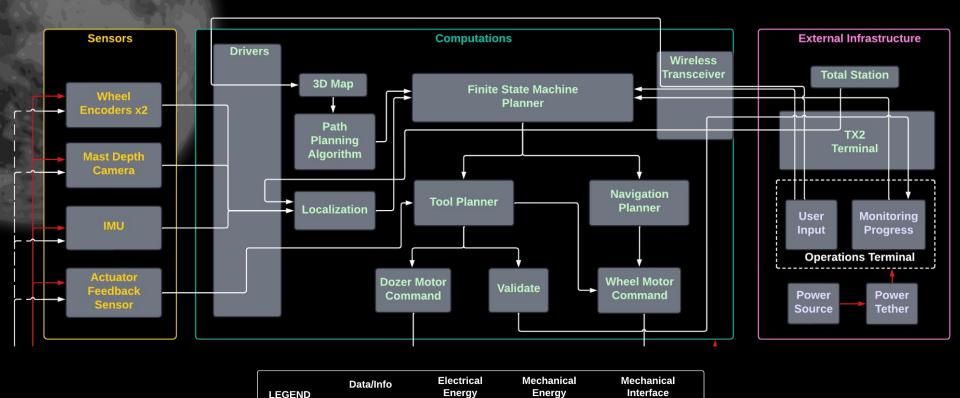

Non-Functional Requirements (Desirable)

Sr. No.	Parameter	Description
D.N.1	Technological Extensibility	The system will be well documented and designed so that future teams can easily access and build on the work
D.N.2	Aesthetics	Requirement from sponsor, the rover must look presentable and lunar-ready
D.N.3	Modularity	To enable tool interchangeability, the tool assemblies must be modular and easy to assemble/disassemble
D.N.4	Repeatability	The system will complete multiple missions without the need of maintenance

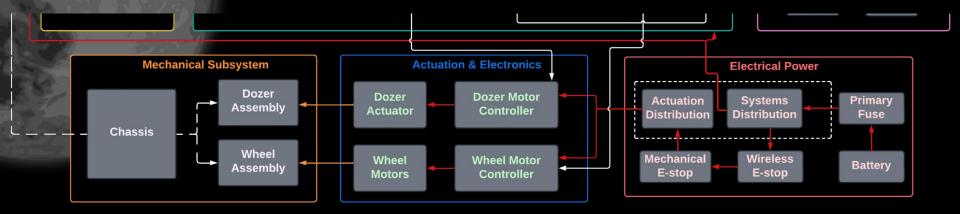

Performance Requirements (Mandatory)

Sr. No.	Performance Metrics
M.P.1	Will plan a path with cumulative deviation of <= 25% from chosen latitude's length
M.P.2	Will follow planned path to a maximum deviation of 10%
M.P.3	Will climb gradients up to 15° and have a contact pressure of less than 1.5 kPa
M.P.4	Will avoid craters >= 0.5 metres and avoid slopes >= 15°
M.P.5	Will fill craters of <mark>up to 0.5 meters</mark> in diameter and <mark>0.1m</mark> in depth
M.P.6	Will groom the trail to have a maximum traversal slope of 5°

Functional Architecture



Cyber-Physical Architecture

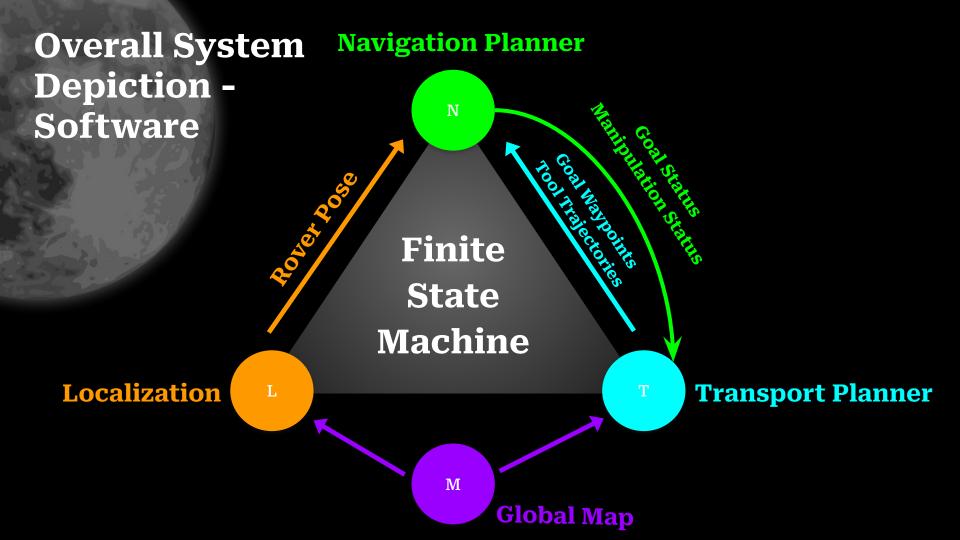


13

Cyber-Physical Architecture

Cyber-Physical Architecture

LEGEND	Data/Info	Electrical Energy	Mechanical Energy	Mechanical Interface


Current System Status

Targeted Requirements in Spring

Requirement	Description	Status
M.P.1	Will plan a path with cumulative deviation of <= 25% from chosen latitude's length	Achieved
M.P.2	Will follow planned path to a maximum deviation of 10%	Demonstrated
M.P.4 (Part 1)	Will avoid craters >= 0.5 metres	Demonstrated
M.P.5	Will fill craters of <mark>up to 0.5 meters</mark> in diameter and <mark>0.1m</mark> in depth	Demonstrated
M.N.1	Weight - The rover must weigh <mark>under 50kg</mark>	Achieved
M.N.4	Size - The rover should measure less than 1m in all dimensions	Missed
D.N.1	Technological Extensibility - The system will be well documented and designed so that future teams can easily access and build on the work	Achieved
D.N. 2	Aesthetics - Rover must look presentable and lunar-ready	Demonstrated

Overall System Depiction - Hardware

Subsystem Completion Status

Subsystem	Completion %	Future Work
Sensors	75%	Upgrade RealSense D235i to ZED 2i stereo camera
Computations	60%	
1. Jetson and Docker	95%	Integrate ZED drivers
2. Localization Unit	85%	Address frame shifts caused by battery replacements
3. Transport Planner Unit	60%	Implement unit
4. Navigation Planner Unit	90%	Tune navigation stack
5. FSM Planner Unit	95%	Integrate validation unit into FSM
6. Validation Unit	10%	Implement unit
External Infrastructure	100%	None
Mechanical	90%	
1. Dozer Assembly	90%	Refinement of dozer
2. Wheel Assembly	90%	Wheel design iterations, final manufacturing
Actuation	80%	Linear actuator upgrade/tuning, torque sensing
Electrical Power	90%	Change battery placement

Description: Sensors Subsystem

Description: All sensors used on the rover for computations.

Requirements:

- Wheel Encoders (x4)
- Mast Depth Camera (RealSense D435i)
- IMU (VectorNav)
- Actuator Feedback Sensor

Expected Functionality: The sensor data is published to various ROS topics and can be used inside the Docker container to perform computations.

Status: Sensors Subsystem

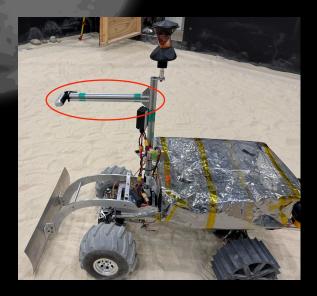
williamfbx@williamfbx-ubuntu: ~/Lunar-R<u>OADSTER/lr_ws</u>

williamfbx@williamfbx-ubuntu:~/Lunar-ROADSTER/lr_ws\$ ros2 topic list /parameter events /rosout /vectornav/anss /vectornav/imu /vectornav/imu uncompensated /vectornav/magnetic /vectornav/pose vectornav/pressure /vectornav/raw/attitude /vectornav/raw/common vectornav/raw/gps /vectornav/raw/gps2 /vectornav/raw/imu /vectornav/raw/ins /vectornav/raw/time /vectornav/temperature /vectornav/time gps /vectornav/time pps /vectornav/time startup /vectornav/time svncin /vectornav/velocity aiding /vectornav/velocity body williamfbx@williamfbx-ubuntu:~/Lunar-ROADSTER/lr_ws\$

Implementation:

- IMU implemented using VectorNav ROS package
- Wheel Encoder parsed using micro-ROS
- Purchased actuator has a feedback potentiometer
- Obtained RealSense point cloud feed using RealSense ROS wrappers

Challenges:


- Difficulty integrating ZED SDK with docker container due to CUDA compatibility issues
- Reverted back to using RealSense, which did not require CUDA
- IMU firmware drivers were outdated

Status: 75% Complete

IMU, wheel encoder, and linear actuator finalized. Upgrade RealSense to ZED 2i in Fall semester

Evaluation: Sensors Subsystem

Modelling:

• CAD designed and 3D printed mast depth camera mounts of 30, 40, 45, and 50 degree angles relative to mast

Analysis:

- 50 degree angled camera mount gives the best view of craters
- However, if tool height is above 15%, occlusion occurs
- Point cloud obtained from RealSense is not as dense as ZED 2i

Testing:

- T10: Optimal Mast Depth Camera Placement Test
- T14: Maintenance, Reliability and Quality Assurance Test

Description: Computations Subsystem Jetson and Docker Unit

Description: Set up the Jetson AGX Xavier with Docker to host and run all critical system packages

Requirements:

- NVIDIA Jetson AGX Xavier
- LAN Router
- Team laptop (operations terminal)

Expected Functionality:

- Acts as primary on-board compute
- Runs ROS2 Humble
- Runs micro-ROS
- Hosts and manages all necessary packages and device drivers inside Docker containers

Status: Computations Subsystem Jetson and Docker Unit

Implementation:

- Connect Jetson to rover's power system
- Assigned static IP on the LAN to enable SSH-based remote access from operations terminal
- Start docker container and initialize all core services and packages

Challenges:

• Setup of a VNC server for remote GUI access

Status: 95% Complete Need to integrate ZED SDK drivers

Evaluation: Computations Subsystem Jetson and Docker Unit

unar-ROADSTER / Ir_ws / docker / Irdev_jetson.dockerfile		
🔵 Luna	arROADSTER added realsense drivers	
Code	Blame Executable File · 189 lines (161 loc) · 7.31 KB	
	# FROM stereolabs/zed:4.2-runtime-jetson-jp6.1.0	
	FROM stereolabs/zed:4.2-devel-jetson-jp6.1.0	
	# ROS 2 Humble image	
	ENV DEBIAN_FRONTEND=noninteractive \	
	ROS_DISTRO=humble \	
	WORKSPACE=/root/Lunar_ROADSTER/lr_ws	
	# NVIDIA Libraries Configuration	
	ENV NVIDIA_VISIBLE_DEVICES all	
	ENV NVIDIA_DRIVER_CAPABILITIES all	
	ENV LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/lib/aarch64-linux-gnu:/usr/lib/aarch64-linux-gnu/tegra:\$LD_LIBRARY	
	# Copy ZED SDK from the source image	
	# COPYfrom=zed_sdk /usr/local/zed /usr/local/zed	
	# ENV LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/zed/lib	
	# ENV PATH=\$PATH:/usr/local/zed/bin	
	COPY ./ \$WORKSPACE	
	# Base environment configuration	
	COPY docker/.p10k.zsh /root/.p10k.zsh	
	ENV TERM=xterm-256color	
	RUN apt-get update && apt-get install -y zsh bash wget \setminus	
34	&& PATH="\$PATH:/usr/bin/zsh" \	

Modelling:

• Created custom Dockerfile that installs all required system packages

Analysis:

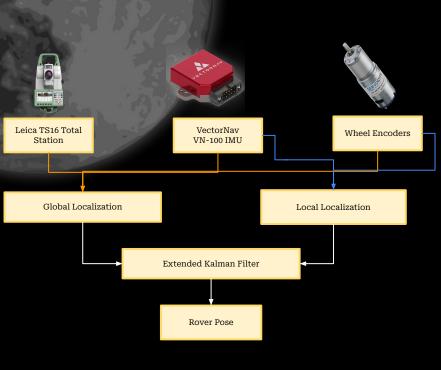
• Verified that all required nodes and drivers start successfully inside the container

Testing:

 T03: Depth Camera Connectivity Test

Upgrade to higher performance Jetson – Fall Goal

Description: Computations Subsystem Localization Unit


Description: Localize the rover in the Moon Yard

Requirements:

- Leica TS16 Total Station
- NVIDIA TX2 Relay Chip + LAN
- VectorNav IMU
- Wheel Encoders

Expected Functionality: Accurately localize rover pose inside the Moon Yard, to be used further for navigation

Status: Computations Subsystem Localization Unit

Implementation:

- On-board IMU and encoders used for local localization
- Total station data fused with IMU and encoders for global localization
- EKF running on Jetson using robot_localization package, now tuned to prevent odometry drift
- Yaw calibration to ensure IMU data is w.r.t map frame

Challenges:

- Incorrect Jetson Docker network permissions blocked two-way communication
- Minor offset introduced when total station battery is replaced, causing frame inconsistencies

Status: 85% Complete

Address frame shifts caused by total station battery replacements

Evaluation: Computations Subsystem Localization Unit

Modelling:

- Configured and tuned EKF to fuse sensor inputs
- Set up frame transforms to ensure all sensor data aligns properly at base_link frame
- Performed yaw calibration to ensure consistent orientation data from IMU

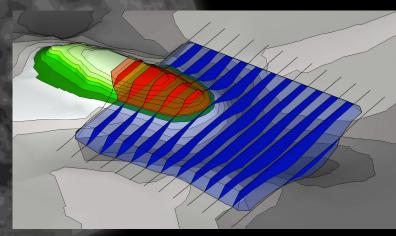
Analysis:

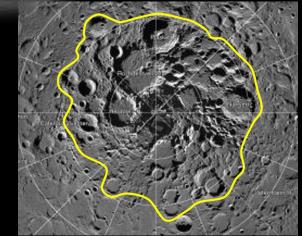
- Analyzed pose stability and drift over time during testing
- Analyzed sensor noise and measurement delays, tuning EKF parameters to minimize odometry drift
- Assessed effect of total station resections and battery swaps on accuracy

Testing:

- T09: Rover can localize itself accurately
- T15: Spring Validation Demo Test

Evaluation: Computations Subsystem Localization Unit




Localization drift issue

Drift corrected + Yaw calibrated

New localization method using SkyCam to be implemented to remove total station dependency – Fall Goal

Description: Transport Planner Unit

Description: Subsystem that plans sand manipulation by using the tool and drive train.


Requirements

- Jetson Xavier AGX
- Dozer Assembly
- Drivetrain (with Wheel Assembly)
- Global Map

Expected Functionality

- Plans a control input for the tool
- Plans a trajectory for the rover for manipulation
- Outputs waypoints and tool trajectories to the navigation planner

Status: Transport Planner Unit

Implementation:

- Global Map is used to identify source and sink nodes.
- Transport Assignments are generated between sources and sinks, based on minimizing a cost function
- ROADSTER Waypoints are obtained from the filtered assignments to generate paths and tool trajectories.
- Methodology needs to be adapted for multiple craters

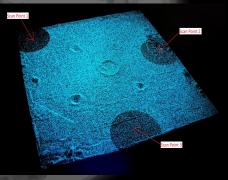
Challenges:

- Processing a dense point cloud
- Modelling tool size within the subsystem for optimal plans
 Status: 60% complete

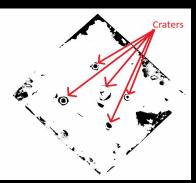
Evaluation: Transport Planner Unit

Description: Computations Subsystem Navigation Planner Unit

Description: Identify gradable craters, obtain coordinates, and navigate the rover to their locations


Requirements:

- FARO Laser Scanner
- NVIDIA Jetson AGX Xavier
- Team laptop (operations terminal)


Expected Functionality:

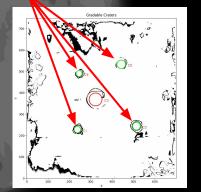
- Accurately detect and classify gradable craters
- Ensure no gradable crater is overlooked
 - Compute an optimal navigation path while avoiding obstacles (non-gradable craters and rocks)
- Navigate and reach the goal location correctly

Status: Computations Subsystem Navigation Planner Unit

Moon Yard Scan Visualization

Implementation:

- Mapped the Moon Yard using the FARO Laser Scanner to generate a point cloud.
- Converted the point cloud file into a ROS-compatible format.
- Applied RANSAC for plane fitting and implemented thresholding to generate a 2D costmap for navigation.
- Identified craters based on diameter and depth, extracting their coordinates.
- Integrated navigation with tool planner to perform transport assignments


Challenges:

- FARO output file (.fls) was incompatible with the PCL library and ROS.
- Plane fitting for identifying gradable craters was challenging due to uneven terrain.
- Accurately classifying gradable craters based on diameter and depth.
- Fine-tune Nav2 parameters for optimal performance on our robot and ensure accurate robot localization

Status: 90% Complete (Tune Navigation Stack) - Fall Goal

Global Costmap

Evaluation: Computations Subsystem Gradable Craters Navigation Planner Unit

Identified Gradable Craters

```
Gradable Craters Location

Crater C1: Diameter = 0.300 meters

Centroid of Crater C1: X = 2.380 m, Y = 2.289 m

Crater C2: Diameter = 0.360 meters

Centroid of Crater C2: X = 5.131 m, Y = 2.443 m

Crater C3: Diameter = 0.600 meters

Crater C4: Diameter = 0.280 meters

Centroid of Crater C4: X = 2.453 m, Y = 4.909 m

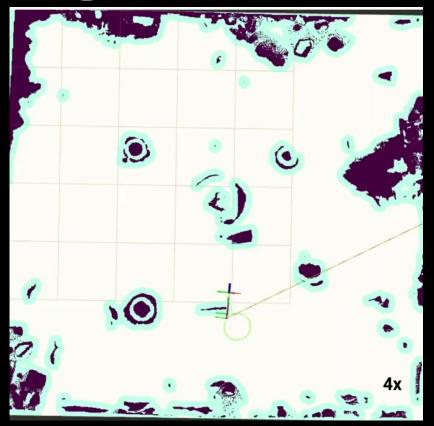
Crater C5: Diameter = 0.400 meters

Centroid of Crater C5: X = 4.421 m, Y = 5.335 m
```

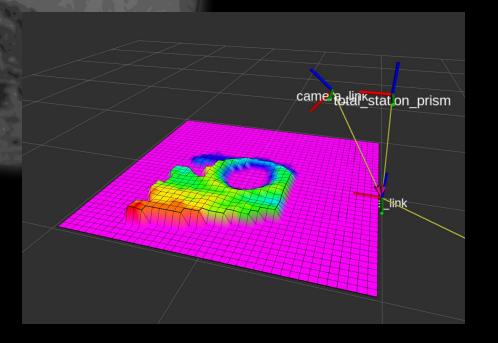
Gradable Craters Location

Modeling:

- Generated dense point cloud maps by taking multiple FARO scans and updated the map origin for consistent localization and navigation frames
- Tuned Nav2 parameters to suit Ackermann steering kinematics.
- Used RViz extensively to visualize and debug transformations and paths


Analysis:

- Evaluated planned paths for smoothness, obstacle avoidance, and feasibility
- Analyzed factors affecting navigation: localization noise, data delay, computation load, and parameter tuning


Testing:

- T08: Mapping the Moon Yard and visualize the point cloud data
- T11: Navigate and reach the goal location correctly
- T15: Spring Validation Demo Test

Evaluation: Computations Subsystem Navigation Planner Unit

Description: Computations Subsystem Validation Unit

Description: Validates if groomed crater satisfies maximum traversability requirement (M.P.6)

Requirements:

- RealSense D235i or ZED 2i stereo camera
- Camera driver packages
- Jetson Xavier AGX

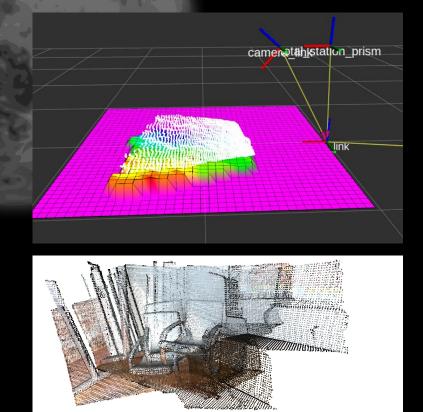
Expected Functionality:

 Outputs trail RMSE elevation error and/or maximum traversal slope

Status: Computations Subsystem Validation Unit

Implementation:

- Preliminary implementation for SVD Encore by calculating RMSE relative to mean elevation
- Will implement full unit in Fall semester using mast camera


Challenges:

- Rover mast moves due to rover suspension. May cause errors in estimating the ground plane
- Compute is not enough for RealSense point cloud feed at 30 FPS

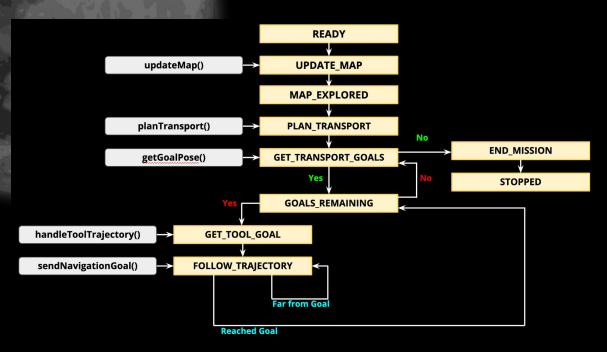
Status: 10% Complete

<pre>info_logger_node-1]</pre>	[INFO]	[1745446813.600659910]	[info_logger_node]:	Mean Elevation:	1.41	. CM
<pre>info_logger_node-1]</pre>	[INFO]	[1745446813.600924924]	[info_logger_node]:	Elevation RMSE:	2.91	CP
<pre>info_logger_node-1]</pre>	[INFO]	[1745446933.590001611]	[info_logger_node]:	Mean Elevation:	0.99	C
<pre>info_logger_node-1]</pre>	[INFO]	[1745446933.590321099]	[info_logger_node]:	Elevation RMSE:	1.90) CM

Evaluation: Computations Subsystem Validation Unit

Modelling:

• Calibrated camera {X, Y, Z, R, P, Y} so that flat ground has zero elevation and no rotation


Analysis:

 Point cloud obtained from RealSense is not as dense as ZED 2i. May not be adequate for validation requirements

Testing:

• Milestone deadline set for PR8

Description: Computations Subsystem Finite State Machine Unit

Description: High level behaviour tree for entire autonomy stack

Requirements:

- Sensors subsystem
- Computations subsystem
- External infrastructure
- Mechanical subsystem
- Actuation subsystem
- Electrical power subsystem

Expected Functionality:

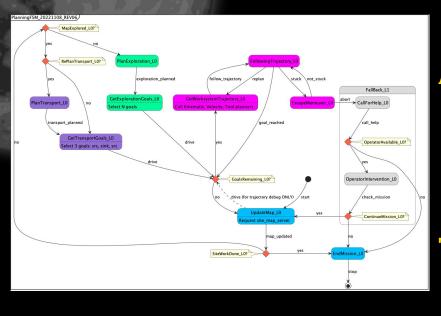
• Entire system is able to grade craters autonomously

Status: Computations Subsystem Finite State Machine Unit

[behavior_executive_node-1] ~~~~~~ Machine iteration [behavior executive node-1] Pre-Signal: MAP UPDATED [behavior executive node-1] State LO: SITE WORK DONE [behavior executive node-1] State L1: EXPLORATION [behavior executive node-1] SITE WORK DONE [behavior_executive_node-1] ~~~~~ Machine iteration Pre-Signal: NO [behavior executive node-1] [behavior executive node-1] State LO: MAP EXPLORED State L1: EXPLORATION [behavior executive node-1] [behavior executive node-1] MAP EXPLORED [behavior executive node-1] ~~~~~~ Machine iteration [behavior executive node-1] Pre-Signal: YES [behavior executive node-1] State LO: PLAN TRANSPORT [behavior executive node-1] State L1: TRANSPORT [behavior_executive_node-1] PLAN_TRANSPORT [behavior executive node-1] Number of source nodes: 211 [behavior_executive_node-1] Number of sink nodes: 513 [behavior executive node-1] Source volume: 8.15189 [behavior executive node-1] Sink volume: 7.71075 [behavior executive node-1] Number of transport assignments: 1 [behavior executive node-1] obj value: 19.0638 [behavior_executive_node-1] ~~~~~~ Machine iteration [behavior executive node-1] Pre-Signal: TRANSPORT PLANNED [behavior executive node-1] State LO: GET TRANSPORT GOALS State L1: TRANSPORT [behavior executive node-1] [behavior_executive_node-1] GET_TRANSPORT GOALS [behavior executive node-1] Current goal poses size: 6 [behavior executive node-1] Pose 0: (3.18076, 1.68076), yaw: 0.785396 | Type: off [behavior executive node-1] Pose 1: (3.88787, 2.38787), yaw: 0.785396 | Type: sou [behavior executive node-1] Pose 2: (4.09393, 2.59393), yaw: 0.785396 | Type: sin [behavior_executive_node-1] Pose 3: (4.37071, 2.87071), yaw: 0.785396 | Type: sou [behavior executive node-1] Pose 4: (3.87574, 2.37574), yaw: 0.785396 | Type: sin k backblade [behavior executive node-1] Pose 5: (3.18076, 1.68076), vaw: 0.785396 | Type: off set [behavior_executive_node-1] ~~~~~ Machine iteration [behavior executive node-1] Pre-Signal: DRIVE [behavior_executive_node-1] State L0: GOALS REMAINING [behavior executive node-1] State L1: TRANSPORT [behavior_executive_node-1] GOALS REMAINING [behavior executive node-1] ~~~~~~ Machine iteration Pre-Signal: YES [behavior executive node-1] [behavior_executive_node-1] State LO: GET WORKSYSTEM TRAJECTORY [behavior executive node-1] State L1: TRANSPORT [behavior executive node-1] [INFO] [1745729328.317639120] [behavior executive node] : [Tool] Sent actuator command. goalPose type = offset, tool position = 100.0 [behavior_executive_node-1] GET_WORKSYSTEM_TRAJECTORY [behavior executive node-1] current goalPose type = offset [behavior executive node-1] ~~~~~~ Machine iteration [behavior executive node-1] Pre-Signal: YES

williamfbx@williamfbx-ubuntu: ~/Lunar-ROADSTER/lr_ws Q =

Implementation:


- FSM callbacks implemented at 2 Hz
- Heavy computations parallelized and detached from main thread to not block FSM node from iterating

Challenges:

• Compute not sufficient for active mapping using RealSense

Status: 95% Complete Integrate validation unit into FSM – Fall Goal

Evaluation: Computations Subsystem Finite State Machine Unit

Modelling:

 Initial FSM design sourced from Crater Grader. Adapted design for our needs

Analysis:

- Computations take too long. Rover often completely stops for calculations
- Integrating active mapping sometimes causes topic messages to be missed due to high network layer traffic

Testing:

- T13: Integration Test
- T15: Spring Validation Demo Test

Description: External Infrastructure Subsystem

Description: Mission components deployed offboard the rover to support localization and communication

Requirements:

- Leica TS16 Total Station
- NVIDIA TX2 Relay Chip
- LAN Router
- Team laptop (operations terminal)

Expected Functionality:

- Accurately localize {X, Y, Z}-coordinates of the rover inside Moon Yard
- Establish two-way communication

Status & Evaluation: External Infrastructure Subsystem

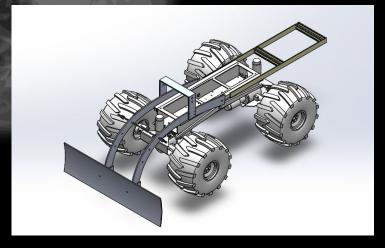
Implementation:

R william_fu@williamfuubuntu: ~ Q ≡ − □	
william_fu@williamfuubuntu: ~/Deskto ×	
william_fu@williamfuubuntu:-\$ ros2 topic info /total_station_prism Type: geometry_msgs/msg/PoseWithCovarianceStamped Publisher count: 1 Subscription count: 0	
william_fu@williamfuubuntu:~\$ ros2 topic hz /total_station_prism	
average rate: 8.395	
min: 0.095s max: 0.148s std dev: 0.01877s window: 10	
average rate: 7.968 min: 0.095s max: 0.257s std dev: 0.03608s window: 18	
average rate: 3.992 min: 0.095s max: 3.157s std dev: 0.60696s window: 24	
average rate: 4.511 min: 0.092s max: 3.157s std dev: 0.52852s window: 32	
average rate: 5.042 min: 0.092s max: 3.157s std dev: 0.46907s window: 41	
average rate: 5.443	
min: 0.092s max: 3.157s std dev: 0.42595s window: 50 average rate: 5.656	
min: 0.087s max: 3.157s std dev: 0.39633s window: 58 average rate: 5.908	
min: 0.087s max: 3.157s std dev: 0.36933s window: 67	
william_fu@williamfuubuntu:~\$	

- Total Station sends rover coordinates to TX2 relay chip, forwards data packet via LAN network to rover
- Established static IP on LAN network so operations terminal can communicate via SSH

Challenges:

- Unable to obtain access to the TX2 relay chip login details
- Incorrect Jetson Docker network permissions blocked two-way communication


Status: Completed

Analysis: Investigated network permission issues inside Jetson Docker

Testing: T05: External Infrastructure Test

Description: Mechanical Subsystem Dozer Assembly

Description: Lunar terrain manipulation tool

Requirements:

- Dozer blade
- Dozer arms assembly
- Linear actuator
- Arduino Due

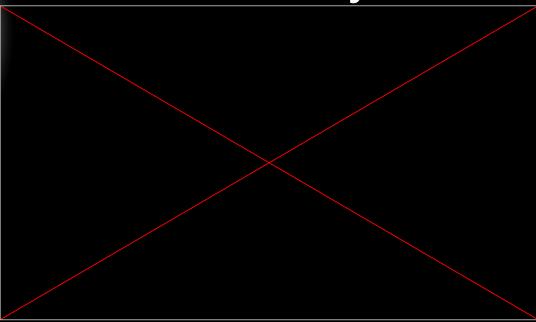
Expected Functionality:

- Perform dozing of sand
- Perform backblading
- Actuate automatically based on commands from tool planner

Status: Mechanical Subsystem Dozer Assembly Unit

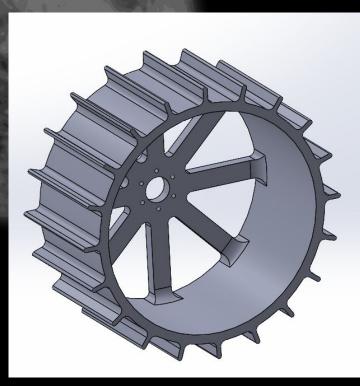
Implementation:

- Research: Dozer shapes and sizes, actuation methodologies.
- Designed the dozer assembly (blade, arms, yoke, mounts) using SolidWorks.
- Shortlisted linear actuators of different gear ratios.
- Manufactured and assembled all parts on the rover.
- Testing with different actuators


Challenges:

- Fabrication problems
- Limited access to FRC Workshop

Status: 90% Complete


- Demonstrated automatic dozing and backblading capabilities of the assembly in SVD
- Refine the assembly by remanufacturing certain components

Evaluation: Mechanical Subsystem Dozer Assembly Unit

Excellent pushing and grading capability, owing to the shape and size of the blade, and the robust dozer arms Improved yoke/actuator arch to be manufactured in Fall based on the actuator

Description: Wheel Assembly Unit

Description: Assembly that enables movement of the rover by acting as an interface between the drivetrain and ground.

Requirements:

- Wheel (3D Printed PLA)
- Mounting Assembly to the Suspension
- Drive Train (Differential and Steering)
- Motors

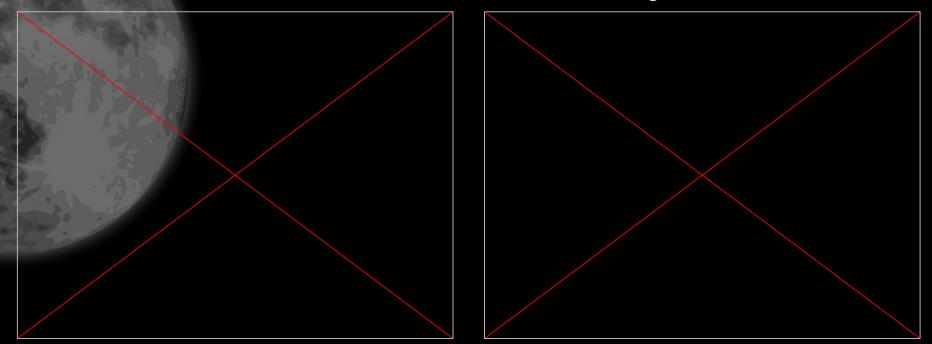
Expected Functionality:

- Provide required traction for movement and grading of sand
- Minimize wheel slip
- Allow for steering in sand
- Desirable Use materials that can function on the Lunar Surface
 ⁴⁹

Status: Wheel Assembly Unit

Implementation:

- Design single-part iterations in SolidWorks
- 3D-print designs and test in the MoonYard
- Observe and re-design until the design is satisfactory


Challenges:

- 3D Printing the wheel is a long process with frequent failures
- Steering system of the rover is fragile and frequently disengages solved.

Status: 90% Complete

- Demonstrated mobility and pushing power with 4 printed wheels in SVD
- Next iteration in Fall to make the design lighter.
- Integration of current sensing to measure wheel torque.

Evaluation: Wheel Assembly Unit

Great performance in traction and generating pushing power in all tests Torque feedback to be integrated in the Fall to estimate traction and slip Design can be optimized to be lighter - Fall goal

Description: Actuation Subsystem

Description: Power transfer methodologies for rover mechanisms.

Requirements:

- DC Motors with Encoders (x4)
- Linear Actuator (with feedback)

Expected Functionality:

- Deliver power to wheels for mobility
- Steer the front and rear wheels
- Actuate the dozer assembly to facilitate mobility and dozing

Status: Actuation Subsystem

sicmicro Motion Studio										
e Device Help										
ched Devices	Temperature1 27.5	M1 Anps 0	M1 Encoder	0 🔲 M1 S	peed 0	Main Battery	12.3		Model 2	h7a
		M2 Amps 0	M2 Encoder			Logic Battery	1.5		Version 4	1.1.29
	Setup Control Mode	Packet Setal	-	RC/Analo	g Options Moting	Max Deadband	26			
		Sign Magnitude			Exponential	Min Deadband				
Disconnect Selected Unit		Single Channel Mode		E.						
		Swap "Mode" and "Lip			RC Rp/Mode Swt Enable Encoder 1	in RC/Analog Mode				
Device Status		Swap Encoder Channe Enable Multi-Unit Mode				in RC/Analog Mode				
General Settings		Enable USB to TTL Re Reverse M1 Relative D	slay Mode	Motors						
Concert Storige		Reverse M2 Relative D			Max Current 15		4			
PWM Settings	Serial				Max Current 15 Ellenking(%) 5.1		4- 4-			
Websthy Settings	Packet Serial Address	128			Banking(1) 5.1		4			
veccry setings	Baudrate				Default Accel 65		÷			
Position Settings	Timeout	0.0	econds (0 disab	Area) M1 De	afault Deccel 65		4			
-	Simple Serial	Slave Select		M2 C	Default Accel 65	6360	4			
	Battery			M2 De	efault Deccel 65	6390	4			
	Battery Cutoff	Use User Settings	*	10						
	Max Main Battery		4	Enc	oder 1 Mode 🙆	uadrature	. 1			
	Min Main Battery	6.0	4		oder 2 Mode					
	Main Eattery Offset		-		S3 Mode	daut		Dev		
Inable Space Bar Stop All	Max Logic Battery		0		S4 Mode			20.0	0	Inecu
STOP	Min Logic Battery Logic Battery Offset		*		S5 Mode D	isabled		20.0	0 10.0	
SIUP	Lugic basery cesta		(*)		TRL1 Mode D	isabled		0	0	
					ESP		SEI	0 SE2		
🖙 Actuor	nix LAC Co	NR LIH LIH		0			SEI			
Ge Actuor File He	nix LAC Co elp	onfiguration	Utility	0			SEI	SE2	PE1	
🖙 Actuor	nix LAC Co elp		Utility	0			SEI	SE2	PE1	
Ge Actuor File He	nix LAC Co elp	onfiguration	Utility	0			SEI	SE2	PE1	
Ge Actuor File He	nix LAC Co elp	onfiguration	Utility	0			SEI	SE2	PE1	
Ge Actuor File He	nix LAC Co elp rol Advanc	onfiguration ced Configura	Utility	2 DF3 2 DF3 2 DF3		HMT H H2 H H2	SEI	SE2	PE1	
Ge Actuor File He	nix LAC Co elp	onfiguration ced Configura	Utility	0			SEI	SE2	PE1	
Ge Actuor File He	nix LAC Co elp rol Advanc	onfiguration ced Configura	Utility	2 DF3 2 DF3 2 DF3		HMT H H2 H H2	SEI	SE2	PE1	
Actuor File He Direct Contr	nix LAC Co elp rol Advanc 0%	nfiguration ced Configura	Utility ation Feedba	ck Position	E99	HINT HINZ HINZ HINZ HINZ HINZ HINZ HINZ HINZ	SEI	SE2	PE1	
Actuor File He Direct Contr 1. En	nix LAC Co elp rol Advanc 0% sure an acto	onfiguration ced Configura : uator is conne	Utility ation Feedba	2 DF3 2 DF3 2 DF3	E99	HINT HINZ HINZ HINZ HINZ HINZ HINZ HINZ HINZ	SEI	SE2	PE1	
Actuor File He Direct Contr 1. En	nix LAC Co elp rol Advanc 0% sure an acto	nfiguration ced Configura	Utility ation Feedba	ck Position	E99	HINT HINZ HINZ HINZ HINZ HINZ HINZ HINZ HINZ	SEI	SE2	PE1	
Actuor File He Direct Contr 1. En 2. Co	nix LAC Co elp rol Advanc 0% sure an actu	onfiguration ced Configura : : uator is conne arto the LAC	Utility ation Feedba	rrz on orz	CSP	HINT HINZ HINZ HINZ HINZ HINZ HINZ HINZ HINZ	SEI	SE2	PE1	
Actuor File He Direct Contr 1. En 2. Co	nix LAC Co elp rol Advanc 0% sure an actu	onfiguration ced Configura : : uator is conne arto the LAC	Utility ation Feedba	ck Position	CSP	HINT HINZ HINZ HINZ HINZ HINZ HINZ HINZ HINZ	SEI	SE2	PE1	
Actuor File He Direct Contr 1. En 2. Co 3. Co	nix LAC Co elp ol Advanc 0% sure an actu nnect powe nnect the U	Infiguration ced Configura : uator is conne ar to the LAC JSB cable to t	Utility ation Feedba ected to the	rrz on orz	oort of the	100% e LAC	561	3 22	PE1	
Actuor File He Direct Contr 1. En 2. Co 3. Co 4. Inc	nix LAC Co elp ol Advanc 0% sure an actr nnect powe nnect the U crementing t	Infiguration ced Configura i uator is conne arto the LAC JSB cable to t he Device nu	Utility ation Feedba ected to th the comput umber will s	ck Position	event of the	них р них р — 100% е LAC	set 1	■ 922 	▼ PE1 ×	
Actuor File He Direct Contr 1. En 2. Co 3. Co 4. Inc	nix LAC Co elp ol Advanc 0% sure an actr nnect powe nnect the U crementing t	Infiguration ced Configura i uator is conne arto the LAC JSB cable to t he Device nu	Utility ation Feedba ected to th the comput umber will s	ck Position	event of the	них р них р — 100% е LAC	set 1	■ 922 	▼ PE1 ×	
Actuor File He Direct Contr 1. En 2. Co 3. Co 4. Inc	nix LAC Co elp ol Advanc 0% sure an actr nnect powe nnect the U crementing t	Infiguration ced Configura uator is conn ar to the LAC JSB cable to t he Device nu ostition value 1	Utility ation Feedba ected to th the comput umber will s	ck Position	event of the	них р них р — 100% е LAC	set 1	■ 922 	▼ PE1 ×	
Actuor File He Direct Contr 1. En 2. Co 3. Co 4. Inc	nix LAC Co elp rol Advance 0% sure an acturn nnect powe nnect the U crementing ti ange the Po	Infiguration ced Configura uator is conn ar to the LAC JSB cable to t he Device nu ostition value 1	Utility ation Feedba ected to th the comput umber will s below to co	ck Position	eort of the	них р них р — 100% е LAC	set 1	■ 922 	▼ PE1 ×	
File He Direct Contr 1. En 2. Co 3. Co 4. Inc 5. Ch	nix LAC Co elp rol Advance 0% sure an acturn nnect powe nnect the U crementing ti ange the Po	unfiguration ced Configura ced Configura stor is commu- er to the LAC JSB cable to t the Device nu costion value I Enter Po	Utility ation Feedba ected to th the comput umber will a below to co osition (%)	ck Position e appropriate p ter and the LAC witch control to antrol the actual 0.00	eort of the	100% e LAC 99.60	set 1	AC her pa	▼ PE1 ×	

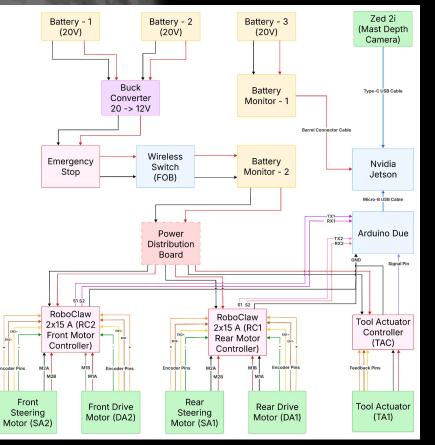
Implementation:

- Selected drive motors with higher torque for better traction and mobility
- Selected linear actuator for dozer assembly
- Interfaced drive motors and steering motors with Roboclaw motor controller
- Interfaced Actuator with Linear Actuator Controller Board and Arduino Due

Challenges:

- Mismatched gearing in motors caused non-uniform steering in front and rear
- Worn-out pinion gears
- Oscillations near setpoint of linear actuator under load.

Status: 90% Complete


- Demonstrated enhanced steering and driving in SVD
- Upgrade/tune linear actuator

Evaluation: Actuation Subsystem

New drive motors provide adequate motion in the Moonyard. Actuator has the capability to lift the rover, as demonstrated in SVD. Replace actuator for better and smoother performance - Fall goal

Description: Electrical Subsystem

Description: Rover's power and logic circuitry. **Requirements:**

- Buck Converter (20 V -> 12 V)
- Power Distribution Board (PDB)
- RoboClaw Motor Controller 2
- Linear Actuator Controller
- Linear Actuator
- Zed 2i Depth Camera
- E-Stop
- Wireless Switch
- IMU VectorNav VN100
- Arduino Due
- Nvidia Jetson Xavier AGX
- Wireless Receiver for Joystick
- DC motors with Encoders

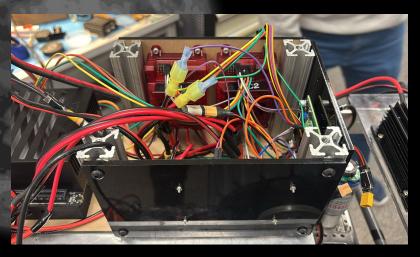
Expected Functionality:

- Distribute power efficiently to all rover components
- Ensure stable voltage levels for uninterrupted operation

Status: Electrical Subsystem

Implementation:

- Integrated new electrical components and designed a custom Power Distribution Board (PDB) based on updated power requirements
- Designed a compact and accessible electronic box to streamline the electrical subsystem setup
- Successfully integrated and tested the PDB within the rover's electrical system


Challenges:

- Understanding and adapting to the existing circuit design and limitations.
- Ensuring the compact design of the electronic box while maintaining accessibility and proper cooling.

Status: 90%

Integrating torque feedback sensing and updating battery position – Fall Goal

Evaluation: Electrical Subsystem

Modeling:

- Developed detailed circuit diagram integrating existing and new electrical components
- Modeled custom PDB with over-current, reverse-voltage, and power indication features
- Designed electronics box for minimal footprint, cooling, and accessibility

Analysis:

- Verified voltage and current demands for each subsystem component to ensure PDB output stability
- Assessed cable routing and hardware quality assurance

Testing:

• T07: Complete Hardware Test

What went well?

- 1. Mechanical Design
- 2. Electronics Box Design
- 3. Transport Planner
- 4. Navigation Planner
- 5. Finite State Machine

What didn't go well?

- 1. Reliability of Autonomy
- 2. Demonstrating Performance Metrics
- 3. System Improvement for Encore

What needs to improve?

- Codebase (Bloated, heavy compute)
- 2. Localization Accuracy
- 3. Wiring
- Pre-demo setup methodology

Req.	Description	Status	Score
M.P.1	Cumulative deviation from latitude	Achieved - Global path planning methodology has been set up. We were only able to demonstrate a straight line for a single crater.	5/10
M.P.2	2 Navigation Accuracy Demonstrated - The ROADSTER foll generated global path to an average of 8.16%. Metric will also improv localization.		9/10
M.P.4 (Part 1)	Crater Avoidance	Demonstrated - Methodology for identification of craters to avoid set up. Shown in sim during SVD	8/10
M.P. 5	Crater Grooming	Demonstrated - Groomed craters in both autonomous and teleop. Built a strong, capable machine for crater grooming	10/10

Req.	Description	Status	Score
M.N.1	Weight	Achieved - The rover weighs 25kg. This number may increase with additions during the Fall. Need to demonstrate.	8/10
M.N.4	Size	Missed - The size of the dozing arms were increased to allow for backblading. The battery mounting extension arms need to be removed to meet this requirement.	3/10
D.N.1	Technological Extensibility	Achieved - We have maintained an Engineering Wiki and extensively documented our entire design process. Need to demonstrate.	8/10
D.N.2	Aesthetics	Demonstrated - Sponsor requirement. Design look is satisfactory with minor changes in cable management and colour schemes	9/10

6/10

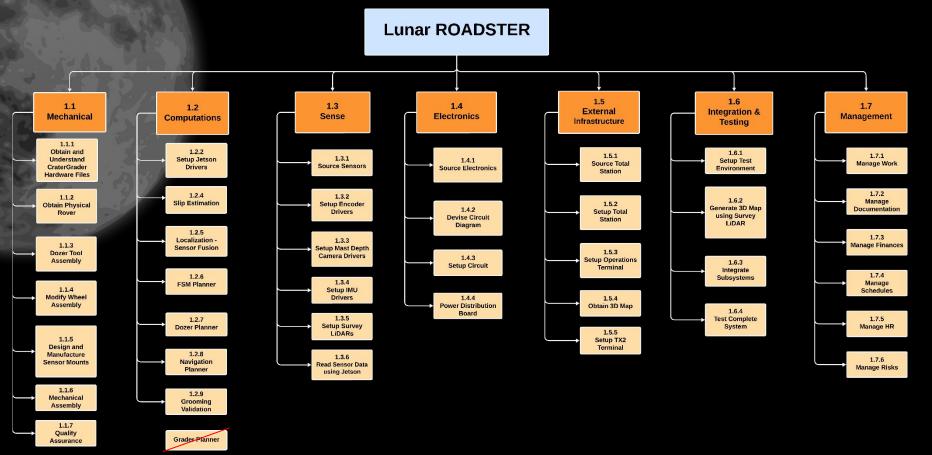
Presentation / Management 9/10

Hardware 9/10 **OVERALL** 8/10 Software

Video Excerpt

Conclusions after SVD

STRENGTHS


- Robust Tool Subsystem
- Compact E-Box
- Wheels
- Power Distribution Board (PDB)
- Management and Presentation
- External Infrastructure
- Software Integration

WEAKNESSES

- Mechanical Vulnerability
- Electrical Unreliability
- Compute Bottleneck
- Reliability of autonomy
- Demonstrating performance
 metrics

PROJECT MANAGEMENT

Work Breakdown Structure

Schedule

Major Milestones:

- All major spring milestones completed ahead of SVD
- Systems require improvement to meet FVD goals

Current Status:

- Achieved all promised goals for SVD
- Slight delays due to additional development for SVD Encore (higher compute requirements)

Plan to Improve:

- Upgrade to a higher-performance Jetson during summer
- Make final system adjustments to ensure system robustness before PR6

Fall Test Plan

Date	Event	Capability Milestones	Tests	Requirements
09/10	PR7	• Hardware and software refinement	Validate hardware upgrades, software fixes, and system stability improvements	M.F.5 M.F.9 M.N.3
09/24	PR8	 Validation stack setup Wheel torque measurement Navigation tuning 	Detect robot stalling through torque measurement, adjust tool height, and verify smooth navigation through path execution tests	M.F.2 M.F.3 M.F.4 M.F.8 M.F.9
10/08	PR9	• Autonomous grading of multiple craters	Verify autonomous grading performance across multiple craters	M.F.2 M.F.3 M.F.4 M.F.5 M.F.6 M.F.7 M.F.9

Fall Test Plan

Date	Event	Capability Milestones	Tests	Requirements
10/29	PR10	• SkyCam-based localization for improved global positioning	Test SkyCam-based localization by checking rover's ability to self-localize accurately with / without external infrastructure	M.F. 3
11/12	PR11	Full system integrationQuality assurance testing	Check all subsystems and units are functioning correctly	M.F.2 M.F.3 M.F.4 M.F.5 M.F.6 M.F.7 M.F.8 M.F.9
11/17 11/24	PR12 (FVD and FVD Encore)	• Final system demonstration involving autonomous grading of multiple craters	Demonstrate full autonomous operation by detecting, avoiding ungradable craters, and grading multiple suitable craters according to mission specs	M.F.1 M.P.1 M.F.2 M.P.2 M.F.3 M.P.3 M.F.4 M.P.4 M.F.5 M.P.5 M.F.6 M.P.6 M.F.7 M.F.8 M.F.9

Fall Validation Demonstration

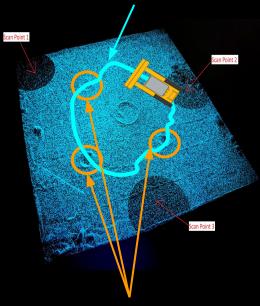
Test Location

Planetary Robotics Lab Moon Yard

Sequence of Events

Prior Setup:

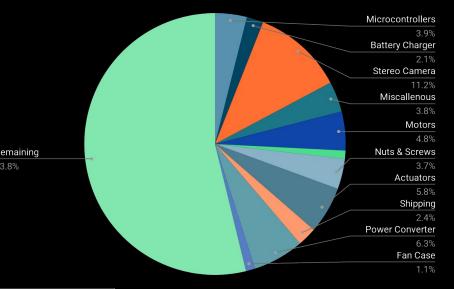
- 1. Prepare the Moon Yard with several craters and dunes in a circular path.
- 2. Scan the Moon Yard with a FARO Scanner to obtain a global map for navigation.
- 3. Attach and connect all the components and subsystems of the rover.
- 4. Place the rover in the Moon Yard and calibrate its localization using a star-sun tracker, visual odometry, and/or total station.


During Demonstration:

- 5. Switch the rover to autonomous mode and use goal poses with offsets to plan the path.
- 6. Observe the rover autonomously grade craters and level dunes in a circular path.
- 7. After each dozed crater, use the ZED camera to validate whether the dozing satisfies the performance requirements.
- 8. If anything unexpected occurs press the emergency stop button.

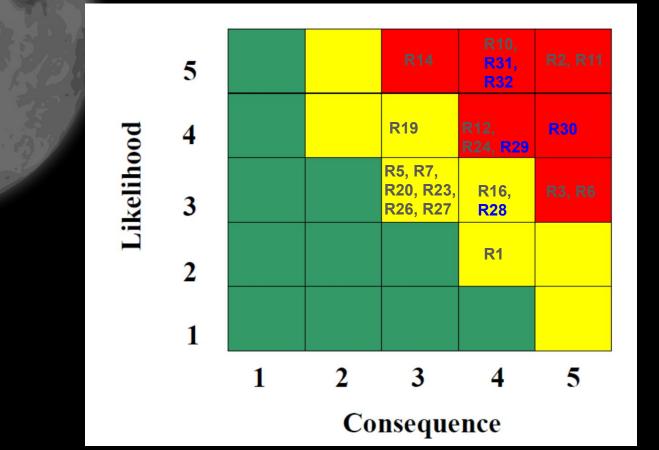
Quantitative Performance Metrics

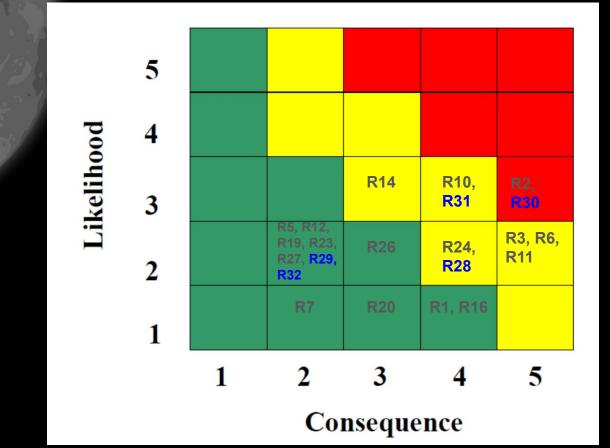
M.P.1: Will plan a path with cumulative deviation of <= 25% from chosen latitude's length
M.P.2: Will follow planned path to a maximum deviation of 10%
M.P.3: Will climb gradients up to 15° and have a contact pressure of less than 1.5 kPa
M.P.4: Will avoid craters >= 0.5 metres and avoid slopes >= 15°
M.P.5: Will fill craters of up to 0.5 meters in diameter and 0.1m in depth
M.P.6: Will groom the trail to have a maximum traversal slope of 5°


Follow a circular path

Groom several craters in a circular path

Budget


Major Items	Units	Total Price
ZED 2i Stereo Camera	1	\$562.00
DC/DC Power Converter	1	\$315.51
Linear Actuators	3	\$290.00
Planetary Gear Motors	4	\$239.96


MRSD Budget	MRSD Budget Spent (\$)	MRSD Budget Spent (%)	Total Budget Spent*	Remaining Balance
\$5,000	\$2,309.07	46.2%	\$5,379.07	\$2690.93

* Includes items inherited from Crater Grader and Supervisor

Risk Management (Updated) Risk Summary

Risk Management (Updated) Reduced Risk Summary

Risk ID	Risk Title	Risk Owner	Risk Type:				Technical, Logistics		
R28	Electrical Hardware Finalization	Ankit							
Description		Date Added		5					
		2/14/2025	poo	4					
E-box Desigi	Likelihood	3				\otimes			
	ΓI	2				Ĥ			
Consequen	ce			1					
Not meeting	the hardware deadline				1	2	3	4	5
						Co	nsequ	ence	
Action/Miles	stone	Success Criteria	D	ate I	Planne	ed	Im	Date pleme	
Use previous	02/14/2025				04/06/2025				
Order PCB a	nd components (and spares) outside of MRSD schedule	Successfully order and assemble the PCB	03/26/2025				04/04/2025		

Risk ID	Risk Title	Risk Owner	Risk	Туре	:		Logis	stics	
R29	Access to FRC Workshop	Deepam							
Description		Date Added		5					
	ess, no hardware fabrication/repairs can be carried out in	2/7/2025	poo	4				\otimes	
the absence	Likelihood	3							
	Li	2		\oplus					
Consequen	се		2						
Not meeting	the hardware deadline			1	1	2	3	4	5
			Consequence						
							Date		
Action/Mile	stone	Success Criteria	D	ate F	lann	ed	Im	pleme	ented
Try other fat	2/9/2025			4/4/2025					
Request Tim permanent	n, John or Red for getting temporary access, if not		2/12	/2025					

Risk ID	Risk Title	Risk Owner	Risk Type:			Logistics			
R30	No spares available	Team		_					
Description	1	Date Added		5					
		3/4/2025	poor	4					\bigotimes_{\bigoplus}
Discontinue	d model, spare parts unavailable	Date Updated	Likelihood	3					\bigcirc
		4/10/2025	Li	2					
Consequer	nce			1					
The whole p	project falling through, or redo almost all subsystems on a d	ifferent rover.			1	2 Co	3 nsequ	4 ence	5
Action/Mile	estone	Success Criteria	Date Planned				Date Implemented		
Check out e	Bay and other similar platforms for spares	Successfully find exact spares on these platforms	3/6/2025						
Check out a		3/6/2025							
Find a twin	3/6/2025			3/7/2025)25			
Maintain all	parts, especially mechanical parts	Successfully avoid future breakdowns and part failures	3/7/2025			4/10/2025			

Risk ID	Risk Title	Risk Owner	Risk	Туре	9:		Technical		
R31	Localization frame shift after total station battery swap	Bhaswanth		_					
Description		Date Added		5					
Dettemente		3/4/2025	poo	4					
	cement in the total station causes small frame offsets, calization inaccuracies.	Date Updated	Likelihood	3				\oplus	
		4/10/2025	Li	2					
Consequence	ce			1					
Leads to poo	r navigation performance and risk of missing the crater dur	ing grading operations.		1	1	2 Co	3 onsequ	4 ence	5
Action/Miles	stone	Success Criteria	Date Planned				Date Implemented		
Implement re of orientate-t	esection method using three known prism locations instead o-line	4/26/2025							
Explore and	test alternative localization methods (using SkyCam)	4/26/2025							

Risk ID	Risk Title	Risk Owner	Risk Type:					Technical		
R32	Arduino requires reset before operation	Bhaswanth		_						
Description		Date Added		5						
Anduine need	da ta ha manually react as sh tima hafara atarting	3/4/2025	poor	4						
	ds to be manually reset each time before starting switching between autonomy and teleoperation modes.	Date Updated	Likelihood	3						
		4/10/2025	Li	2		$ \bigoplus $				
Consequen	ce			1						
Slows down transitions.	setup time and impacts operational readiness, delaying mis	ssion start and mode		1	1	2 Co	3 nsequ	4 ence	5	
								Date		
Action/Miles	stone	Success Criteria	Date Planned				Implemented			
Check USB	port permissions and drivers issues on Jetson		4/26	6/2025)					
Verify that Ar	duino is connected via USB 3.0 instead of USB 2.0 port	4/26/2025								
Check for RO Arduino	DS node frequency mismatches causing packet loss to	Match ROS publish/subscribe rates	4/26/2025							

Lessons Learned

- Check for common issues online while choosing hardware (Jetson and Zed issue)
- Schedule based on resource availability such as lab access and lead times
- Plan for Progress Review goals at the beginning of the semester
- Have a proper plan for demo split between SVD and SVD Encore
- Do not choose a project where you have to build both software and hardware from scratch :)

Fall Activities

- Integrate and test continuously
- Improve tool actuator
- Wheel torque feedback
- Tune overall software stack
- Solution to compute problem (new Jetson/code optimization)
- New localization method -SkyCam
- Planning for grooming multiple craters

Colonize the Moon!Team Lunar ROADSTER

"Starting with a foothold on the Moon, we pave the way to the cosmos"

Thank You!

https://mrsdprojects.ri.cmu.edu/2025teami/

Appendices

A.1. Derivation for M.P.5:

- Chang'e-4's landing site was surveyed and found that 97.5% of nearby craters were below 15.5 meters in diameter.
- Our rover is approximately 1/30th the size of a commercial grader, so it shall be able to grade $15.5/30 \approx 0.5$ meter craters at least.
- Source: DOI 10.3390/rs14153608

A.2. Derivation for M.P.3:

- Average depth-to-diameter (DtoD) ratio of 0.07 near the North pole
- Assuming worst-case scenario of a crater with twice DtoD ratio of 0.14, the gradient is θ = arctan(0.14*2) \approx 15 degrees
- Contact pressure requirement follows recommendation from NASA
- Source: DOI 10.1029/2022GL100886, NASA/TP-2006-214605

A.3. Derivation for M.P.1:

- Recommendation from Nature paper on extraterrestrial path-planning metrics
- Source: DOI 10.1038/s41598-023-49144-8

Credits for images:

- Generative AI
- Google Images
- Dr. William Red Whittaker's slides

Risk ID	Risk Title	Risk Owner	Туре	Description	Consequence	Risk Reduction Plan							
	PRL Testbed	A 1.11	Cabadulia a	O ale a de lise a	PRL Testbed unavailable due to	No testbed available for testing	Devise and discuss a testing and demo plan with Red and other stakeholders of the PRL testbed beforehand and reserve slots						
R1	Scheduling	Ankit	-	scheduling conflicts with other high priority projects	and/or SVD	Reach out to external testing facilities like Astrobotic or CAT for a backup testing facility							
						Schedule tests at night							
	Excavator and grader					Shift requirements for SVD							
R2 1	tool planner takes	Simson	Technical	Integration of the excavator and grader software with hardware takes	Unable to meet SVD deadline and potential requirements		Integrate the grader during Fall semester						
	longer than expected to deliver										longer than expected	change	Potentially use off-the-shelf code if available, preferably from CraterGrader
									Perform unit testing and subsystem validation continuously				
				Subsystems work individually, but	Delay in integration causing	Integrate one subsystem at a time							
R.1	Integration issues between subsystems	Deepam	Deepam	Technical	integration and communication between the subsystems are flawed	scheduling overruns, requirements change and failure	Use a common framework (e.g. ROS2 interfaces) for communication between subsystems to reduce						
					of the demo	bugs							
						Keep to planned schedule and have at least 5 weeks for testing and integration							
	Belly depth sensor is	Bhaswanth Tec	Bhaswanth Ter	Bhaswanth Tec				The belly depth camera is used to validate if a groomed crater is	Will result in major revision and changes to the validation	Mount the depth camera at another location on the rover (e.g. on a mast)			
R4	3 1						wanth Technical	satisfiable. The sensor may not be able to adequately determine depth	architecture and functional	Use another sensor to determine depth variations (e.g. LIDAR, visual odometry, IR sensor)			
				variations suitable for validation scheduling		If all else fails, use the total station for validation							

Risk ID	Risk Title	Risk Owner	Туре	Description	Consequence	Risk Reduction Plan							
				Our rover builds on top of the work accomplished by Crater Grader. If we		Thoroughly go through Crater Grader's code and the mechanical schematics provided							
R5		Bhaswanth	Technical	cannot get Crater Grader to perform autonomous crater filling, we mayExtra time commitment to start from scratch or obtaining a suitable	Test each component and wiring to see if they are working								
	autonomous crater filling			he navigation stack and designing the		If it is still not working, inherit only the software component from Crater Grader and build hardware ourselves							
						Use off-the-shelf components that are available on hand (e.g. from CMU labs or Red's workshop)							
				Shipping delays of components Delays in I	Delays in hardware integration,	Start ordering and designing components during Winter break so there is adequate leeway for delivery and manufacturing before Spring semester starts							
	Delay in arrival and manufacture of hardware components	William Schedule	William Schedule	Schedule	ordered and/or manufacturing delays causing pushbacks in scheduling	Schedule	Schedule	Schedule	Schedule	Schedule	Schedule	Schedule ordered and/or manufacturing delays causing pushbacks in scheduling	Use simulations to work on software components while we wait for the components to be delivered and/or manufactured
								Implement other subsystems that are independent from the subsystem that is missing parts					
						In case of delay in wheels, work with the existing wheels and proceed with the timeline while waiting for the new ones to arrive.							
				Inability to accurately simulate the	The rover's performance in the	Ask CraterGrader how they ran all their simulations and gather resources							
R7	Lack of proper simulation environment	Simson Technical	n Technical	lead to suboptimal performance	Moon Pit may be compromised, leading to inefficiencies, mission delays, or potential failure in achieving key objectives	Explore LunarSim - https://github.com/PUTvision/LunarSim and check how useful this will be, during the winter break							
						Develop Gazebo environment							

Risk ID	Risk Title	Risk Owner	Туре	Description	Consequence	Risk Reduction Plan			
R10	Mast depth camera FOV is blocked	William	Technical	Mast depth camera's FOV can be blocked, partially or completely, due to dust, misalignment of camera, or interference from the rover's own excavator assembly.	Hinders the rover's ability to perceive its surroundings accurately, resulting in navigation errors and inefficiencies in excavation tasks	Conduct field tests to choose an optimal height to place the depth camera such that dust does not reach it and it can clearly see in front of the rover, despite the excavator assembly. Ensure that visual data such as depth perception and object detection should not be compromised			
				We have a lot of performance	Delays in testing and validation,	Have revised performance requirements separately for SVD and FVD (focus more on SVD)			
R11	Too many performance requirements	Ankit	Technical, Schedule	requirements and we may not be able to meet all of them by April for SVD	impacting project timelines and April SVD Demo results	Talk to CraterGrader and discuss what is feasible and what is not in the given time			
						PM should track schedule properly and team members have to push to meet the timeline			
				The transmission and steering		Thoroughly check the Crater Grader's assembly and carry out maintenance of any worn-out parts			
R12	Drive system wear-and-tear causes malfunction	Deepam	Deepam	Technical	eepam Technical	epam Technical	Technical to suboptimal vehicle dynamics, and	Rover drive system fails and may require a lot of repair and maintenance	Completely replace the assembly parts with the same/similar new parts for better performance and reliability
						Added limit switches to avoid steering gears to operate beyond their limits			
				Due to significant sand manipulation,		Design proper sand enclosures and mounts for sensitive components			
				the flying sand/dust can enter and accumulate over sensitive electronics		Review placement of components			
R14	Dust ingress	William Technical, Cost	Technical,	Villiam Technical, Cost	Technical, (PDB, drivers, Arduino) and sensors	(PDB, drivers, Arduino) and sensors	or demonstrations. Highly inhibits	Review scale and speed of sand manipulation to eliminate root-cause of flying sand/dust	
				component failure or incorrect sensing		Allocate contingency budget and order spares of the sensitive components in case of component failure			

		Risk					
Risk ID	Risk Title	Owner	Туре	Description	Consequence	Risk Reduction Plan	
					Code modifications or config parameter changes during testing		Implement GitHub version control to store and retrieve the best versions of code and configuration
R16	Code version control	Simson	Technical	might not be saved, affecting the final demo. Reverting to a stable version is difficult if changes do not work as expected.Delay in code integration and implementation		Use Google Drive to backup important documentation explaining setup processes	
R19	Items missing	Ankit	Logistics	Critical project items may go missing if not stored properly or tracked.	Delay in hardware	Maintain an inventory tracking spreadsheet	
K 19	items missing	ΑΠΚΙ	LOGISTICS	Items may be misplaced or borrowed without proper logging	implementation	Include spare inventory	
	Sensor ROS packages		Technical,	Finalized sensors might lack compatible ROS packages, leading	Delay in software implementation	Perform trade studies to pick sensors that are compatible with ROS versions before finalizing	
R20	not available	William	Schedule	to delays or significant changes in the software architecture		Select sensors and ROS versions that minimize potential conflicts	
R23	Lunar-accurate cut/fill regions are not	Simson	Technical	The rims of the craters may not be enough to fill the whole crater. Going to a different region to carry the	The basic assumption of sand availability fails. We may need to rethink the basic concept of tool	Accurately create the environment and assess if the rims are enough to fill	
	possible to groom	e to groom		sand to the crater may prove to be inefficient	planner to fit the new parameters of the environment	If not, modify PRs accordingly	

Risk ID	Risk Title	Risk Owner	Туре	Description	Consequence	Risk Reduction Plan
R24	Sensor data is too noisy to fulfill performance requirements		lechnical	Performance requirements are tough and ambitious, sensor noise may prevent us from achieving it	Failure to demonstrate performance requirements may cause us to lose marks in the	Relax the performance requirements enough to ensure that they are achievable
	requirements				demonstrations	Ensure enough testing time to tune parameters
R26	Off-the-shelf wheels don't interface with the rover	Ankit		No off-the-shelf wheels fit the rover, We'll have to redesign wheel hubs and mountings as per the new	Continue with sub-optimal wheels that the rover currently has, thus, not meeting one of the non-functional requirements	Shift requirements to FVD
				wheels.		Good enough market research to see find the best fit, with least amount of changes

				Unable to login to TX2 and interface with a LAN network for transmitting data over WiFi ro	Delay in finalizing	Set up a new TX2 (Re-flash the TX2). Reach out to previous teams to understand their methodology and
R27	TX2 Integration	William	Technical	Jetson	localization stack	retrieve credentials
	Electrical hardware finalization	Ankit	Technical	E-box Design dependence on to-be manufactured PDB.	Not meeting the hardware deadline	Use previous knowledge and account for a placeholder in the design
	Access to FRC Workshop	Deepam	Logistics	Without access, no hardware fabrication/repairs can be carried out in the absence of Tim	Not meeting the hardware deadline	Try other fab-labs on campus. Request Tim, John or Red for getting temporary access, if not permanent
				Discontinued model, spare parts	The whole project falling through, or redo almost all subsystems on a	Check out eBay and other similar platforms for spares Check out and stock similar parts if not same Find a twin rover that was used by a previous team on campus Maintain all parts, especially mechanical
R30	No spares available	Team	Logistics	unavailable	different rover.	parts