

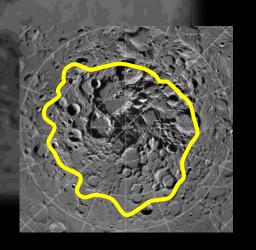
Lunar ROADSTER

(Robotic Operator for Autonomous Development of Surface Trails and Exploration Routes)

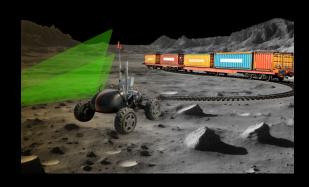
"Starting with a foothold on the Moon, we pave the way to the cosmos"

The Team

Bhaswanth Ayapilla

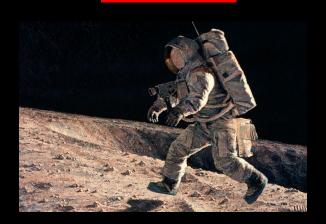

Simson D'Souza

Boxiang (William) Fu



Dr. William "Red" Whittaker

Motivation: The Lunar Polar Highway


Is it possible for a solar-powered rover to repeatedly drive around the Moon and never encounter a sunset?

Motivation: The Lunar Polar Highway

Sun-synchronous circumnavigation around Moon at $28 \text{ days } \times 24 \text{ hr} = 672 \text{ hour sun rotation}$

/ At equator	11,000 km	16 kph
At 50 deg	7,040 km	10 kph
At 60 deg	5,500 km	8 kph
At 70 deg	3,700 km	6 kph
At 75 deg	2,800 km	4 kph
At 80 deg	1,870 km	3 kph
At 81 deg	1,529 km	2.5 kph

Jogging speed if the route was flat, circular and traversable

The Project: Lunar ROADSTER

An autonomous moon-working rover capable of finding ideal exploration routes and creating traversable surface trails.

By grooming trail paths, rovers with less traversing capabilities will be able to travel at higher speeds and higher power efficiencies.

A traversable and circuitous trail path will allow rovers to maintain sun-synchronicity, thereby allowing machines to run for much longer.

The groomed trails will become the backbone for colonization of the Moon by enabling transportation, logistics and enterprise development.

Use Case: Circular Path Grooming

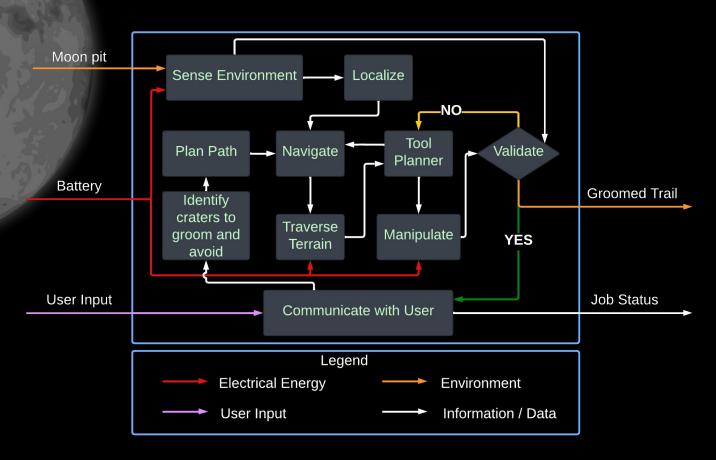
Objectives Tree Autonomously Groom an Exploration Trail on The Moon Navigate to the Identified Identify Regions to be Manipulate Lunar Regolith Regions Groomed Generate ideal Choose Communicate **Cut Regions** Perform Fill Confirm Fill Trail Path Regions to Mission Operation chosen Operation Avoid/Groom using 3D Map Requirements to the Robot Communicate Follow Trail Localize Robot State to Path User

Functional Requirements (Mandatory)

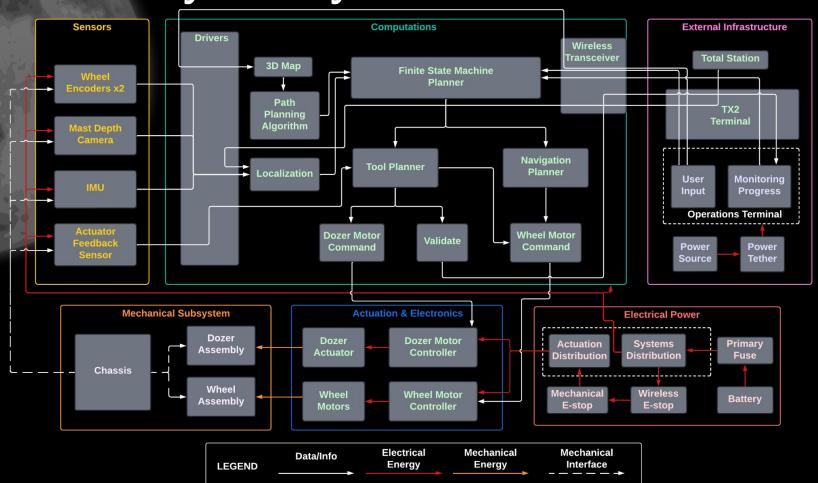
Sr. No.	Mandatory Functional Requirement
M.F.1	Shall perform trail path planning
M.F.2	Shall operate autonomously
M.F.3	Shall localize itself in a GPS denied environment
M.F.4	Shall navigate the planned path
M.F.5	Shall traverse uneven terrain
M.F.6	Shall choose craters to groom and avoid
M.F.7	Shall grade craters and level dunes
M.F.8	Shall validate grading and trail path
M.F.9	Shall communicate with the user

Non-Functional Requirements (Mandatory)

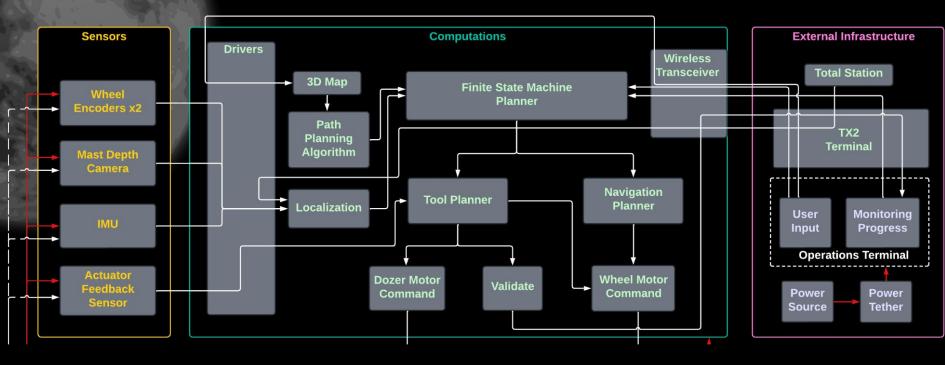
Sr. No.	Parameter	Description
M.N.1	Weight	The rover must weigh under 50kg
M.N.2	Cost	The cost for the project must be under \$5000
M.N.3	Computing Capacity	The onboard computer should be able to run all required tasks
M.N.4	Size/Form Factor	The rover should measure less than 1m in all dimensions


Non-Functional Requirements (Desirable)

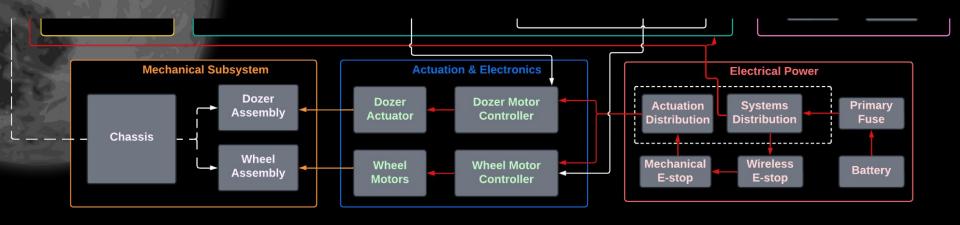
Sr. No.	Parameter	Description
D.N.1	Technological Extensibility	The system will be well documented and designed so that future teams can easily access and build on the work
D.N.2	Aesthetics	Requirement from sponsor, the rover must look presentable and lunar-ready
D.N.3	Modularity	To enable tool interchangeability, the tool assemblies must be modular and easy to assemble/disassemble
D.N.4	Repeatability	The system will complete multiple missions without the need of maintenance


Performance Requirements (Mandatory)

Sr. No.	Performance Metrics	
M.P.1	Will plan a path with cumulative deviation of <= 25% from chosen latitude's length	
M.P.2	Will follow planned path to a maximum deviation of 10%	
M.P.3	Will climb gradients up to 15° and have a contact pressure of less than 1.5 kPa	
M.P.4	Will avoid craters >= 0.5 metres and avoid slopes >= 15°	
M.P.5	Will fill craters of up to 0.5 meters in diameter and 0.1m in depth	
M.P.6	Will groom the trail to have a maximum traversal slope of 5°	


Functional Architecture

Cyber-Physical Architecture



Cyber-Physical Architecture

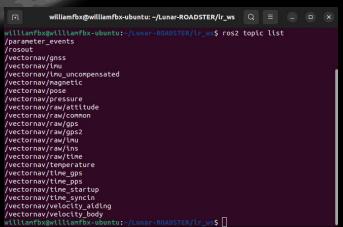
Cyber-Physical Architecture

Subsystem Completion Status

Subsystem	Completion %	Future Work
Sensors	50%	Interface ZED and actuator drivers with docker
Computations	50%	
1. Jetson and Docker	95%	Integrate ZED drivers
2. Localization Unit	75%	Tuning of EKF parameters
3. Tool Planner Unit	10%	Implement unit
4. Navigation Planner Unit	30%	Setup Nav Stack, Integrate Localization and Nav Unit
External Infrastructure	100%	None
Mechanical	75%	
1. Dozer Assembly	85%	Refinement of Dozer
2. Wheel Assembly	65%	Wheel Design Iterations, Final Manufacturing
Actuation	60%	Linear Actuator tuning, Wheel encoder tuning
Electrical Power	50%	Manufacturing and Integrating Electronic Box and PDB

Description: Sensors Subsystem

Description: All sensors used on the rover for computations.


Requirements:

- Wheel Encoders (x4)
- Mast Depth Camera (ZED 2i Stereo Camera)
- IMU (VectorNav)
- Actuator Feedback Sensor

Expected Functionality: The sensor data is published to various ROS topics and can be used inside the Docker container to perform computations.

Status: Sensors Subsystem

Implementation:

- IMU implemented using VectorNav ROS package
- Wheel Encoder parsed using micro-ROS
- Purchased actuator has a feedback potentiometer

Challenges:

- Difficulty integrating ZED SDK drivers with docker container due to CUDA compatibility issues
- IMU firmware drivers were outdated

Status: 50% Complete

IMU and Wheel Encoder finalized. ZED SDK and Actuator Feedback Sensor setup in progress.

Description: Computations Subsystem Jetson and Docker Unit

Description: Set up the Jetson with Docker running necessary packages

Requirements:

- NVIDIA Jetson AGX Xavier
- LAN Router
- Team laptop (operations terminal)

Expected Functionality:

- Serves as the on-board compute
- Run ROS2 Humble
- Run micro-ROS
- Run all necessary packages and drivers

Status: Computations Subsystem Jetson and Docker Unit

Implementation:

- Connect Jetson to power source on rover
- Established static IP on LAN network so operations terminal can communicate via SSH
- Start docker container and run necessary packages

Challenges:

Setting up VNC server for remote access

Status: 95% Complete Need to integrate ZED SDK drivers

Description: Computations Subsystem Localization Unit

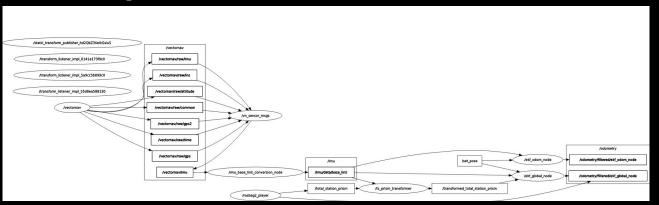
Description: Localize the rover in the Moon Yard

Requirements:

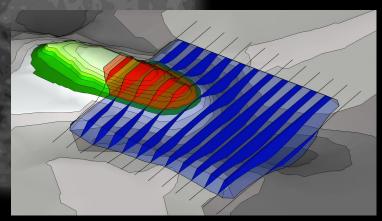
- Rover
- Leica TS16 Total Station
- NVIDIA TX2 Relay Chip
- LAN Router
- Team laptop (operations terminal)

Expected Functionality: Accurately localize rover pose inside the Moon Yard, to be used further for navigation

Status: Computations Subsystem Localization Unit


Implementation:

- On-board IMU and encoders used for local localization
- Total station data fused with IMU and encoders for global localization
- All frames are transformed to base_link
- EKF runs using robot_localization package on Jetson

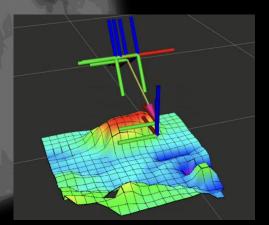

Challenges:

- Incorrect Jetson Docker network permissions blocked two-way communication
- Odometry keeps drifting away EKF needs to be tuned

Status: 75% Complete

Description: Computations Subsystem **Tool Planner Unit**

Description: Subsystem that plans sand manipulation by using the tool and drive train.


Requirements:

- ZED 2i Stereo Camera
- Jetson Xavier AGX
- Dozer Assembly
- Drivetrain (with Wheel Assembly)

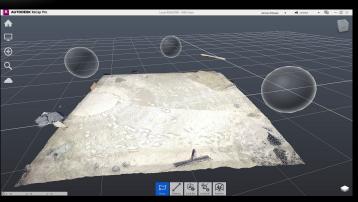
Expected Functionality:

- Plans a control input for the tool
- Plans a trajectory for the rover for manipulation
- Reports back when job is completed

Status: Computations Subsystem Tool Planner Unit

Implementation:

- Integrated ZED 2i Stereo Camera with Elevation Mapping ROS package to create local elevation map.
- Local map will be used to identify cut/fill regions
- Path will be planned and integrated with the navigation planner

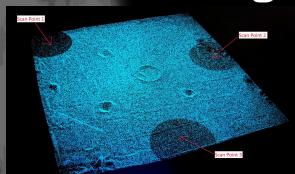

Challenges:

 Trouble integrating ZED SDK packages with Docker container due to incompatible CUDA driver versions.

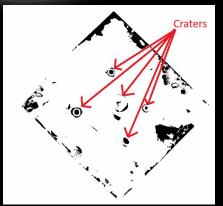
Status: 10% Complete

Description: Computations Subsystem Navigation Planner Unit

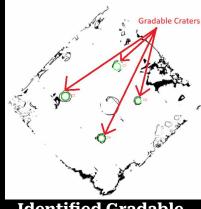
Description: Identify gradable craters, obtain coordinates, and navigate the rover to their locations


Requirements:

- FARO Laser Scanner
- Zed 2i Stereo Camera
- NVIDIA Jetson AGX Xavier
- Team laptop (operations terminal)


Expected Functionality:

- Accurately detect and classify gradable craters
- Ensure no gradable crater is overlooked
- Compute an optimal navigation path while avoiding obstacles (non-gradable craters and rocks)
- Navigate and reach the goal location correctly


Status: Computations Subsystem Navigation Planner Unit

Moon Yard Scan Visualization

Global Costmap

Identified Gradable Craters

Implementation:

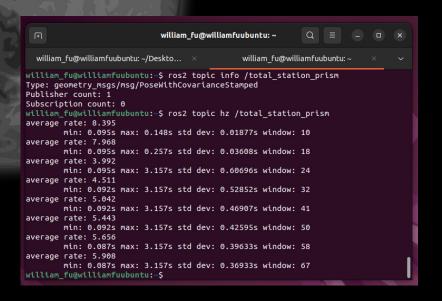
- Mapped the Moon Yard using the FARO Laser Scanner to generate a point cloud.
- Converted the point cloud file into a ROS-compatible format.
- Applied RANSAC for plane fitting and implemented thresholding to generate a 2D costmap for navigation.
- Identified craters based on diameter and depth, extracting their coordinates.

Challenges:

- FARO output file (.fls) was incompatible with the PCL library and ROS.
- Plane fitting for identifying gradable craters was challenging due to uneven terrain.
- Accurately classifying gradable craters based on diameter and depth.

Status: 30% Complete (Navigation Stack setup in progress)

Description: External Infrastructure Subsystem


Description: Mission components that are offboard the rover.

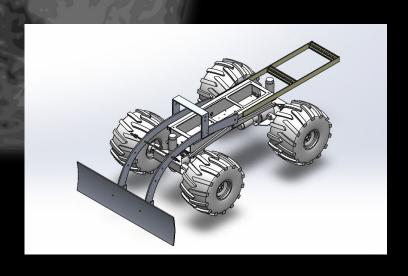
Requirements:

- Leica TS16 Total Station
- NVIDIA TX2 Relay Chip
- LAN Router
- Team laptop (operations terminal)

Expected Functionality: Accurately localize {X, Y, Z}-coordinates of the rover inside the Moon Yard and establish two-way communication.

Status: External Infrastructure Subsystem

Implementation:


- Total Station sends rover coordinates to TX2 relay chip, sends data packet via LAN network to rover.
- Established static IP on LAN network so operations terminal can communicate via SSH.

Challenges:

- Unable to obtain access to the TX2 relay chip login details
- Incorrect Jetson Docker network permissions blocked two-way communication

Status: Completed

Description: Mechanical Subsystem Dozer Assembly

Description: Lunar terrain manipulation tool

Requirements:

- Dozer blade
- Dozer arms assembly
- Linear actuator
- Arduino Due

Expected Functionality:

- Perform dozing of sand
- Perform backblading
- Actuate automatically based on commands from tool planner

Status: Mechanical Subsystem Dozer Assembly Unit

Implementation:

- Research: Dozer shapes and sizes, actuation methodologies.
- Designed the dozer assembly (blade, arms, yoke, mounts) using SolidWorks.
- Shortlisted linear actuators of different gear ratios.
- Manufactured and assembled all parts on the rover.
- Testing with different actuators

Challenges:

- Fabrication problems
- Limited access to FRC Workshop

Status: 85% Complete

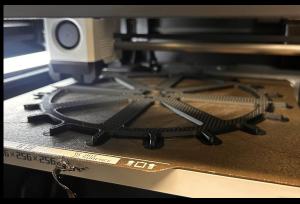
Refining assembly

Status: Mechanical Subsystem Dozer Assembly Unit

Description: Mechanical Subsystem Wheel Assembly Unit

Description: Assembly that enables movement of the rover by acting as an interface between the drivetrain and ground.

Requirements:


- Wheel (3D Printed/Metal)
- Mounting Assembly to the Suspension
- Drive Train (Differential and Steering)
- Motors

Expected Functionality:

- Provide required traction for movement and grading of sand
- Minimize wheel slip
- Allow for steering in sand
- Desirable Use materials that can function on the Lunar Surface

Status: Mechanical Subsystem Wheel Assembly Unit

Implementation:

- **Research:** Grouser shapes and patterns ideal for traction in sand
- Design single-part iterations in SolidWorks
- 3D-print designs and test in the MoonYard
- Observe and re-design until the design is satisfactory
- Finalize design and manufacture using aluminium.
- **Stretch Goal:** Use the wheel test bed in PRL to accurately measure performance

Challenges:

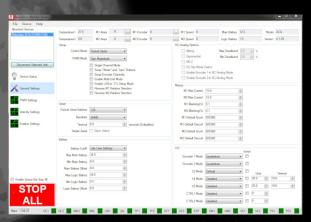
- 3D Printing the wheel is a long process with frequent failures
- Steering system of the rover is fragile and frequently disengages

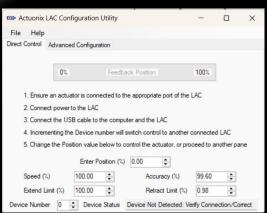
Status: 50% Complete

- Iteration 2 performs better than the stock rubber wheels
- Next test will be using 4 3D-printed wheels

Description: Actuation Subsystem

Description: Power transfer methodologies for rover mechanisms.


Requirements:


- DC Motors with Encoders (x4)
- Linear Actuator (with feedback)

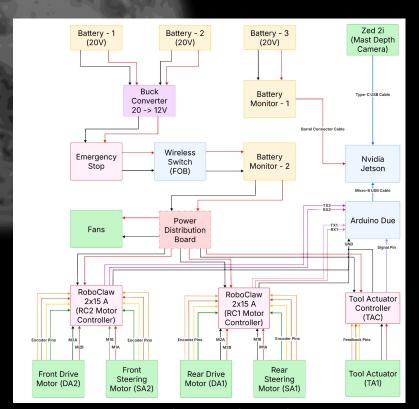
Expected Functionality:

- Deliver power to wheels for mobility
- Steer the front and rear wheels
- Actuate the dozer assembly to facilitate mobility and dozing

Status: Actuation Subsystem

Implementation:

- Selected drive motors with higher torque for better traction and mobility
- Selected linear actuator for dozer assembly
- Interfaced drive motors and steering motors with Roboclaw motor controller
- Interfaced Actuator with Linear Actuator Controller Board and Arduino Due


Challenges:

- Encoder QPPS to be changed using RoboClaw due to change in motors for better teleop and navigation
- Oscillations near setpoint of linear actuator under load.

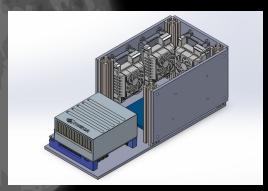
Status: 85% Complete

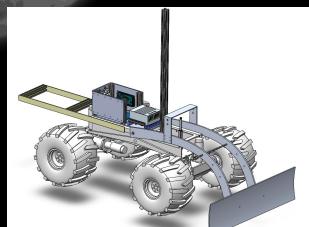
Tuning of actuator gains to reduce oscillations

Description: Electrical Subsystem

Electrical Circuitry

Description: Rover's power and logic circuitry.


Requirements:


- Buck Converter (20 V -> 12 V)
- Power Distribution Board (PDB)
- RoboClaw Motor Controller 2
- Linear Actuator Controller
- Linear Actuator
- Zed 2i Depth Camera
- E-Stop
- Wireless Switch
- IMU VectorNav VN100
- Arduino Due
- Nvidia Jetson Xavier AGX
- Wireless Receiver for Joystick
- DC motors with Encoders

Expected Functionality:

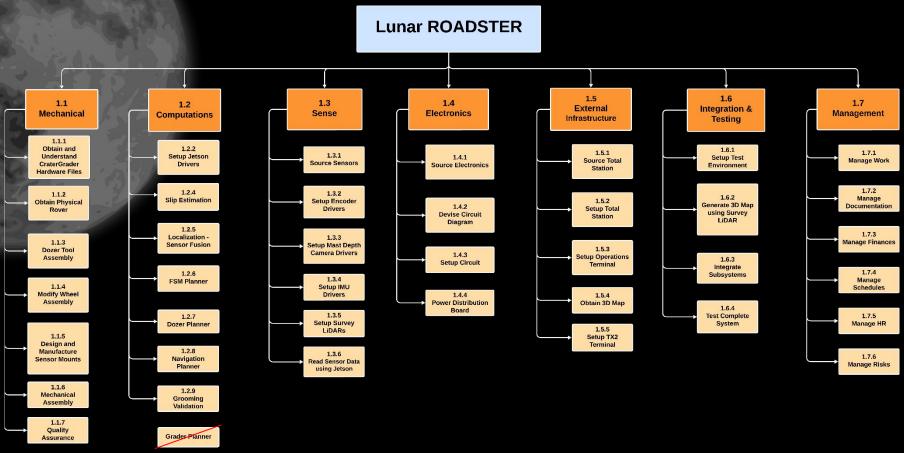
- Distribute power efficiently to all rover components
- Ensure stable voltage levels for uninterrupted operation

Status: Electrical Subsystem

Electronics Assembly Design

Implementation:

- Analyzed the existing circuit connections of the rover designed by the Crater Grader team.
- Modified circuit connections to integrate new electrical components.
- Assessed the power requirements of the components to design a custom Power Distribution Board (PDB).
- Designed a compact and accessible electronic box to streamline the electrical subsystem setup.


Challenges:

- Understanding and adapting to the existing circuit design and limitations.
- Ensuring the compact design of the electronic box while maintaining accessibility and proper cooling.

Status: 50%


- Manufacturing of the electronic box is in progress.
- Power Distribution Board (PDB) manufacturing and integration are planned.

Work Breakdown Structure

Grader Design

Schedule

Spring Test Plan

Date	Event	Capability Milestones	Tests	Requirements
03/20	PR3	 Rover can localize itself accurately Sensor placement do not block tool operations Rover can navigate autonomously Tool can operate autonomously 	T09 T10 T11 T12	M.F.2 M.F.3 M.F.4 M.F.6 M.F.7
04/08	PR4	 Subsystems and units operate when integrated Integrated subsystems do not hinder each other Rover is operable as a system Failing or degraded parts on rover is replaced 	T13 T14	M.F.2 M.F.9
04/17 04/24	PR5 (SVD) PR6 (Encore)	 System can operate autonomously System can localize itself System can navigate autonomously System can traverse the Moon Yard without getting stuck System can grade suitably sized craters and dunes System updates the operations terminal regarding progress 	T15	M.F.2 M.F.3 M.F.4 M.F.5 M.F.7 M.F.9

Fall Test Plan

Month	Capability Milestones	Tests	Validation
August	Rover quality assurance after summer break and enhancement of the rover's facade	Check all subsystems and units are functioning correctly	The rover is able to complete all tasks from Spring
September	Integrate the validation stack for the dozing performance	Present craters of various groomed gradients to the validation stereo camera. The camera should output the perceived gradient and inform the operations terminal of the groomed status of the crater	The rover correctly informs operations terminal on whether the crater is dozed successfully or not
October	Implement new localization stack using no external infrastructure (will use pseudo star-sun tracker)	The rover is able to accurately localize itself in the Moon Yard without external infrastructure	Localization is accurate and comparable to current total station implementation
November	Integrated entire system for circumnavigation dozing of craters	Present several craters in a circular path in the Moon Yard. The rover should avoid ungradable craters and grade suitable craters specified in our performance requirements (M.P.4 and M.P.5)	The rover successfully navigates circular path and dozes suitable craters

SVD and **FVD** Split

Spring Validation Demo	Fall Validation Demo
ROADSTER uses the excavator to groom one crater in a simple, straight path in the Moon Yard.	ROADSTER uses the excavator to groom multiple craters and create a circuitous path around the Moon Yard.
This will be our Minimal Viable Product with simplified localization and path planning.	This will include more ambitious tasks such as Lunar-accurate environments and localization through Visual Odometry / Structure-for-Motion / Star-Sun Tracker

Spring Validation Demonstration

Test Location

Planetary Robotics Lab Moon Yard

Sequence of Events

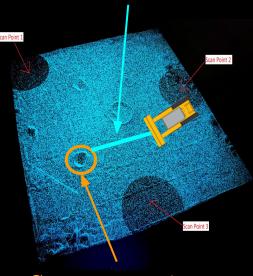
Prior Setup:

- 1. Prepare the Moon Yard with a suitable crater and dune.
- 2. Scan the Moon Yard with a FARO Scanner to obtain a global map for navigation.
- 3. Attach and connect all the components and subsystems of the rover.
- 4. Set up the external infrastructure such as the total station in the corner of the Moon Yard, the LAN router, and the TX2 relay.
- 5. Place the rover in the Moon Yard and calibrate its localization using the total station.

During Demonstration:

- 6. Turn on the rover and SSH into the Lunar ROADSTER docker on the operations terminal laptop.
- 7. Switch the rover to autonomous mode and run the start-up procedure.
- 8. Observe the rover autonomously grade one crater and level one dune.
- 9. If anything unexpected occurs press the emergency stop button.

Quantitative Performance Metrics


M.P.1: Will plan a path with cumulative deviation of <= 25% from chosen latitude's length

M.P.2: Will follow planned path to a maximum deviation of 10%

M.P.4 (Part 1): Will avoid craters >= 0.5 metres

M.P.5: Will fill craters of up to 0.5 meters in diameter and 0.1m in depth

Follow a straight path

Groom one crater

Fall Validation Demonstration

Test Location

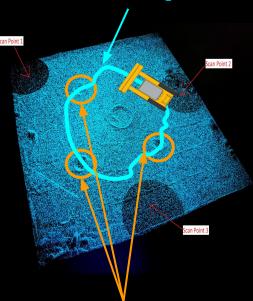
Planetary Robotics Lab Moon Yard

Sequence of Events

Prior Setup:

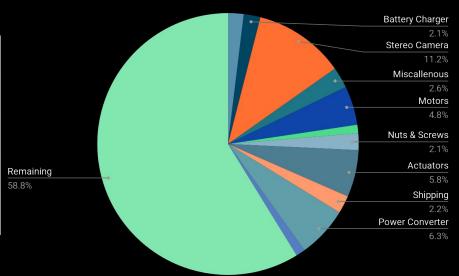
- 1. Prepare the Moon Yard with several craters and dunes in a circular path.
- 2. Scan the Moon Yard with a FARO Scanner to obtain a global map for navigation.
- 3. Attach and connect all the components and subsystems of the rover.
- 4. Place the rover in the Moon Yard and calibrate its localization using a star-sun tracker or visual odometry.

During Demonstration:


- 5. Turn on the rover and SSH into the Lunar ROADSTER docker on the operations terminal laptop.
- 6. Switch the rover to autonomous mode and run the start-up procedure.
- 7. Observe the rover autonomously grade craters and level dunes in a circular path.
- 8. After each dozed crater, use the ZED camera to validate whether the dozing satisfies the performance requirements.
- 9. If anything unexpected occurs press the emergency stop button.

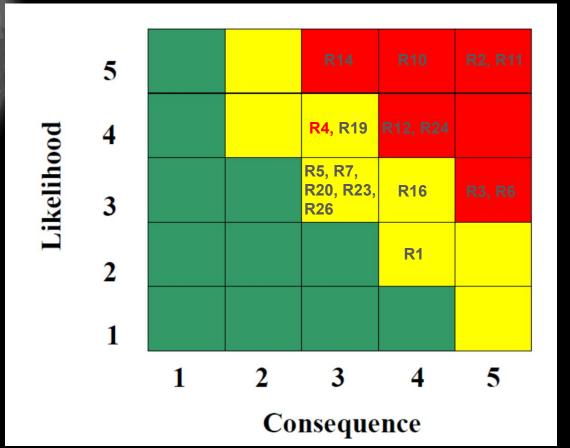
Quantitative Performance Metrics

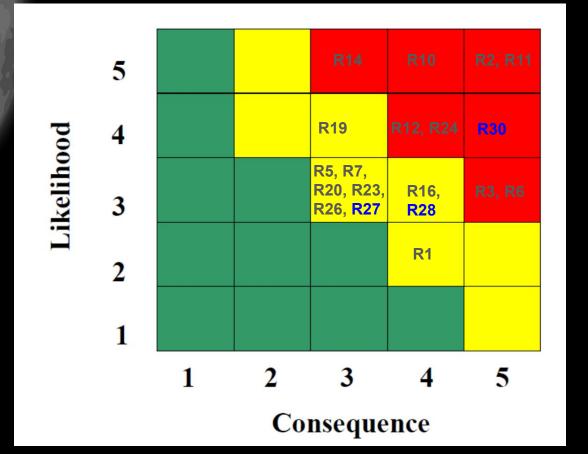
- M.P.1: Will plan a path with cumulative deviation of <= 25% from chosen latitude's length
- M.P.2: Will follow planned path to a maximum deviation of 10%
- M.P.3: Will climb gradients up to 15° and have a contact pressure of less than 1.5 kPa
- M.P.4: Will avoid craters >= 0.5 metres and avoid slopes >= 15°
- M.P.5: Will fill craters of up to 0.5 meters in diameter and 0.1m in depth M.P.6: Will groom the trail to have a maximum traversal slope of 5°


Groom several craters in a circular path

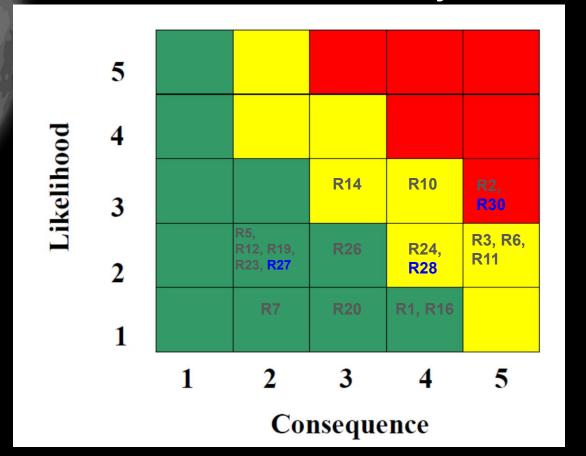
Follow a circular path

Budget


Major Items	Units	Total Price
ZED 2i Stereo Camera	1	\$562.00
DC/DC Power Converter	1	\$315.51
Planetary Gear Motors	4	\$239.96
Linear Actuators	3	\$290.00


MRSD Budget	Budget Budget Budg		Total Budget Spent*	Remaining Balance
\$5,000	\$2,059.92	41.20%	\$5,129.92	\$2940.08

⁴⁵


Risk Management (Previously) Risk Summary

Risk Management (Updated) Risk Summary

Risk Management (Updated) Reduced Risk Summary

Risk ID	Risk Title	Risk Owner	Risk Type:				Technical				
R2	Dozer tool planner takes longer than expected to deliver	Simson									
Description		Date Added		5					\otimes		
lm planantat	ion and integration of the Donor tool planner takes langur	11/27/2024	po	4							
Implementation and integration of the Dozer tool planner takes longer than expected		Date Updated	eliho	Cikelihood					\bigoplus		
		3/9/2024	Like	3							
Consequen	onsequence										
Linable to m	Unable to meet SVD deadline and potential requirements change			1							
Onable to mi	eet 3 v D deadime and potential requirements change				1	2	3	4	5		
						Co	Consequence				
Action/Miles	stone	Success Criteria	D	ate F	Plann	ed	lm	plem	ented		
Shift require	ments for SVD	Updated performance requirements		11/28/2024			11/28/2024				
Potentially u CraterGrade	se off-the-shelf code if available, preferably from r	Successful integration of off-the-shelf components									

Risk ID	Risk Title	Risk Owner	Risk	с Тур	oe:	-	Technical			
R3	Integration issues between subsystems	Deepam		_						
Description		Date Added		5						
Cubayatama	work individually but interretion and communication between	11/27/2024	Likelihood	4						
	work individually, but integration and communication between ems are flawed	Date Updated	ikeli	3					\bigotimes	
uno casoyote		11/27/2024		2					\oplus	
Consequen	nsequence									
Delay in inte	gration causing scheduling overruns, requirements change and	failure of the demo		1 2			3 onseque	4 ence	5	
							Date			
Action/Mile	stone	Success Criteria	Date Planned		ed	Implement		nted		
Perform unit	testing and subsystem validation continuously	Successful testing of all major subsystems	1	1/30	/2024					
Integrate on	e subsystem at a time	Successful integration of all major subsystems	1	11/30/2024						
	non framework (e.g. ROS2 interfaces) for communication osystems to reduce bugs	Adoption of common framework for communications	11/30/2024							
Keep to plar integration	nned schedule and have at least 5 weeks for testing and	Successful integration of all major subsystems	11/30/2024							

Risk ID	Risk Title	Risk Owner	Risk	с Тур	e:		Schedule				
R6	Delay in arrival and manufacturing of hardware components	William		_							
Description		Date Added		5							
Chinning dol	ave of components and and/or manufacturing delays an	11/27/2024	Likelihood	4							
	ays of components ordered and/or manufacturing delays on e components	Date Updated	ikeli	3							
- Gastoni maa		11/27/2024		2					\bigcirc		
Consequence				1							
Delays in ha	rdware integration, causing push backs in scheduling and softw	vare development	1 2			-	3 onseque	4 ence	5		
							Date				
Action/Miles	stone	Success Criteria	Date Planned			ed	Implemented				
Use off-the-s labs or Red's	shelf components that are available on hand (e.g. from CMU s workshop)	Obtain components before end of December									
	g and designing components during Winter break so there is eway for delivery and manufacturing before Spring semester	Obtain components before end of December	1	11/27/2024							
	ons to work on software components while we wait for the to be delivered and/or manufactured	Successful integration of all subsystems on schedule									
	elay in wheels, work with the existing wheels and proceed with while waiting for the new ones to arrive.	Successful integration of all subsystems on schedule									

Risk ID	Risk Title	Risk Owner	Risk Type:				Technical				
R10	Mast depth camera FOV is blocked	William									
Description		Date Added		5				\bigcirc			
Mast depth	camera's FOV can be blocked, partially or completely, due to	11/27/2024	poor	4							
		Date Updated	ikelihood	3							
		11/27/2024	Г	2							
Consequen	ce			1							
	rover's ability to perceive its surroundings accurately, resulting	in navigation errors and		,	1	2	3	4	5		
inefficiencies	s in excavation tasks					Co	nseque	ence			
								Date			
Action/Mile	stone	Success Criteria	Da	Date Planned			lmp	lemei	nted		
Conduct field	d tests to choose an optimal height to place the depth camera	Visual data such as depth									
such that du	st does not reach it and it can clearly see in front of the rover,	perception and object									
despite the	excavator assembly	detection is not compromised.									

Risk ID	Risk Title	Risk Owner	Risk Type:				Technical		
R11	Too many performance requirements	Ankit							
Description		Date Added		5					
Ma baya a la	t of nonformance requirements and use may not be able to	11/27/2024	hood	4					
	ot of performance requirements and we may not be able to em by April for SVD	Date Updated	Likelihood	3					
inoot all or a		11/27/2024		2					\oplus
Consequen	Consequence								
Delays in testing and validation, impacting project timelines and April SVD Demo results					1	2 Co	3 nsequ	4 ence	5
Action/Miles	stone	Success Criteria	Dat	te Pl	lanne	d	Date Implemen		
Have revised (focus more	I performance requirements separately for SVD and FVD on SVD)	Achievable Performance Requirements	11	11/28/2024			12/04/202		024
Talk to Crate given time	rGrader and discuss what is feasible and what is not in the	Meeting conducted	11/28/2024		11/28/2024 12/02		/02/2	024	
PM should tr	ack schedule properly and team members have to push to eline	Project follows the schedule	11	1/28/	/2024				

Top Current Risks

							Technical,				
Risk ID	Risk Title	Risk Owner	Risk	Турє	ei -		Logistics				
R28	Electrical Hardware Finalization	Ankit									
Description		Date Added		5							
		2/14/2025	poo	poc 4							
E-box Desig	n dependence on to-be manufactured PDB.	Date Updated	Likelihood	3				\otimes			
		2/14/2025	ΕÏ	2				\bigcirc			
Consequen	Consequence										
Not meeting	the hardware deadline			1	1	2	3	4	5		
I vot meeting	the nardware deading					Co	onsequence				
							Date				
Action/Mile	stone	Success Criteria	D	ate F	Planne	ed	lm	pleme	nted		
		Successfully design and manufacture E-box									
Use previou	s knowledge and account for a placeholder in the design.	compatible with the new PCB using placeholder PCB design		02/14	1/2025)					

Top Current Risks

Risk ID	Risk Title	Risk Owner	Risk	Туре	1		Logistics				
R29	Access to FRC Workshop	Deepam									
Description		Date Added		5							
Without access, no hardware fabrication/repairs can be carried out in the absence of Tim		2/7/2025	poo	4				\otimes			
		Date Updated	Likelihood	3							
		2/7/2025	===	,							
Consequen	Consequence										
Not meeting the hardware deadline				1	1	2	3	4	5		
r tot mooting					C		nsequ				
							Date				
Action/Mile	stone	Success Criteria	D	lann	Implemented						
Try other fab	o-labs on campus.	Successfully access other fab-labs and manufacture components		2/9/2025							
Request Tim permanent	, John or Red for getting temporary access, if not	Successfully get temporary/permanent access to FRC Workshop	2/12/2025								

Top Current Risks

Risk ID	Risk Title	Risk Owner	Risk Type:			Logis	tics		
R30	No spares available	Team							
Description		Date Added		5					
		3/4/2025	poor	4					\otimes
Discontinue	l model, spare parts unavailable	Date Updated	Likelihood	3					
		3/4/2025	ij	2					
Consequen	ce			1					
The whole p	roject falling through, or redo almost all subsystems on a di		•	1	2 Cor	3 nseque	4 nce	5	
Action/Miles	stone	Success Criteria	D	ate F	lanne	ed	lm	Dat olem	e ented
	stone Bay and other similar platforms for spares	Success Criteria Successfully find exact spares on these platforms	D		Planne 2025	ed	lmį		
Check out el		Successfully find exact	D	3/6/		ed	lmţ		
Check out el	Bay and other similar platforms for spares	Successfully find exact spares on these platforms Successfully find and stock	D	3/6/	2025	ed			ented

Issues

leave	Data	Doto					
		Date Resolved	Participants	Description	Options	Resolution	Justification
טו	IIIIIateu	Resolved	Faiticipants	Description	-		
					Have revised	Revised performance	Conducted meeting with
					performance	requirements down to	Crater Grader team and
					requirements	6. Clearly defined SVD	
				Too many performance	separately for SVD	and FVD objective	feasible and what is not
101	11/28/2024	12/04/2024	Team	requirements for SVD.	and FVD.	split.	in the given time.
					Flash the chip and	Found that chip was	
					build docker	used by LunarX team.	
					container from	Got in contact and	No need to reinvent the
102	01/20/2025	01/27/2025	Boxiang Fu	Unable to login to TX2 chip.	scratch.	obtained login details.	wheel if not necessary.
						Replaced all	Replaced old parts as a
				Steering mechanism		components of the	precaution for further
				components failed due to	Replace broken	assembly and fitted	failure due to
103	02/10/2025	02/14/2025	Ankit Aggarwal	wear-and-tear.	parts.	new screws and bolts.	wear-and-tear.
				Jetson cannot receive ROS			
				topics published by TX2 chip			
			Boxiang Fu	due to docker driver being			This allows docker to
			Bhaswanth	set as "bridge" instead of	Change driver	Driver setting changed	communicate with host
104	02/21/2025	02/24/2025	Ayapilla	"host".	settings	to "host"	system

Issues

		Date Resolved	Participants	Description	Options	Resolution	Justification
105	02/25/2025		Ankit Aggarwal	E-box Design dependence on to-be manufactured PDB. Can't delay the design as hardware deadline needs to be met			
106	02/25/2025		Ankit Aggarwal Deepam Ameria	FRC Workshop Access	 Request Tim Ask John 		
107	03/04/2025		Boxiang Fu Bhaswanth Ayapilla	ZED SDK in docker container not working	Use ZED SDK outside docker Use a dedicated docker container for SDK		
108	03/04/2025	03/07/2025	Team	Rear transmission axle is broken	Ask Red for replacement Look for substitutes	Found replacement chassis with axel in the PRL. Obtained permission from Red to take apart the replacement chassis for the broken part	Replaced the part so that we can continue progress on the rover

Q&A

Thank You!

https://mrsdprojects.ri.cmu.edu/2025teami/

Appendices

A.1. Derivation for P.5:

- Chang'e-4's landing site was surveyed and found that 97.5% of nearby craters were below 15.5 meters in diameter.
- Our rover is approximately 1/30th the size of a commercial grader, so it shall be able to grade $15.5/30 \approx 0.5$ meter craters at least.
- Source: DOI 10.3390/rs14153608

A.2. Derivation for P.3:

- Average depth-to-diameter (DtoD) ratio of 0.07 near the North pole
- Assuming worst-case scenario of a crater with twice DtoD ratio of 0.14, the gradient is θ = arctan(0.14*2) \approx 15 degrees
- Contact pressure requirement follows recommendation from NASA
- Source: DOI 10.1029/2022GL100886, NASA/TP-2006-214605

A.3. Derivation for P.1:

- Recommendation from Nature paper on extraterrestrial path-planning metrics
- Source: DOI 10.1038/s41598-023-49144-8

Credits for images:

- Generative AI
- Google Images
- Dr. William Red Whittaker's slides

		Risk													
Risk ID	Risk Title	Owner	Type	Description	Consequence	Risk Reduction Plan									
D4	PRL Testbed	Audit	O de adulto o	PRL Testbed unavailable due to	No testbed available for testing	Devise and discuss a testing and demo plan with Red and other stakeholders of the PRL testbed beforehand and reserve slots									
R1	Scheduling	Ankit	Scheduling	scheduling conflicts with other high priority projects	and/or SVD	Reach out to external testing facilities like Astrobotic or CAT for a backup testing facility									
						Schedule tests at night									
	Excavator and grader			Internation of the great standard	Unable to meet SVD deadline	Shift requirements for SVD									
R2	tool planner takes	Simson	Technical	Integration of the excavator and grader software with hardware takes		Integrate the grader during Fall semester									
	longer than expected to deliver			longer than expected	change	Potentially use off-the-shelf code if available, preferably from CraterGrader									
						Perform unit testing and subsystem validation continuously									
				Subsystems work individually, but	Delay in integration causing	Integrate one subsystem at a time									
R3	Integration issues between subsystems	Deepam	Technical	Technical	Technical	Technical		Technical	Technical	Technical	Technical		between the subsystems are flawed requirer	scheduling overruns, requirements change and failure of the demo	Use a common framework (e.g. ROS2 interfaces) for communication between subsystems to reduce bugs
						Keep to planned schedule and have at least 5 weeks for testing and integration									
	Belly depth sensor is			validate if a groomed crater is changes to the validation architecture and functional	Will result in major revision and	Mount the depth camera at another location on the rover (e.g. on a mast)									
R4		Bhaswanth	Technical		3	Use another sensor to determine depth variations (e.g. LIDAR, visual odometry, IR sensor)									
				variations suitable for validation	scheduling	If all else fails, use the total station for validation									

Risk ID	Risk Title	Risk Owner	Туре	Description	Consequence	Risk Reduction Plan			
		Our rover builds on top of the work accomplished by Crater Grader. If we			Thoroughly go through Crater Grader's code and the mechanical schematics provided				
	Unable to get Crater Grader to perform	Bhaswanth	Technical	cannot get Crater Grader to perform autonomous crater filling, we may	Extra time commitment to start from scratch or obtaining a suitable	Test each component and wiring to see if they are working			
	autonomous crater filling			need to spend more time working on the navigation stack and designing the entire pipeline	replacement	If it is still not working, inherit only the software component from Crater Grader and build hardware ourselves			
						Use off-the-shelf components that are available on hand (e.g. from CMU labs or Red's workshop)			
			Schedule				Shipping delays of components	Delays in hardware integration,	Start ordering and designing components during Winter break so there is adequate leeway for delivery and manufacturing before Spring semester starts
R6	Delay in arrival and manufacture of hardware components	William		ordered and/or manufacturing delays on custom made components	causing pushbacks in scheduling and software development	Use simulations to work on software components while we wait for the components to be delivered and/or manufactured			
						Implement other subsystems that are independent from the subsystem that is missing parts			
						In case of delay in wheels, work with the existing wheels and proceed with the timeline while waiting for the new ones to arrive.			
			son Tochnical	lead to suboptimal performance	The rover's performance in the Moon Pit may be compromised, leading to inefficiencies, mission delays, or potential failure in achieving key objectives	Ask CraterGrader how they ran all their simulations and gather resources			
R/ I	Lack of proper simulation environment	Simson				Explore LunarSim - https://github.com/PUTvision/LunarSim and check how useful this will be, during the winter break			
					deficiently key objectives	Develop Gazebo environment			

Risk ID	Risk Title	Risk Owner	Туре	Description	Consequence	Risk Reduction Plan											
. 810	Mast depth camera FOV is blocked	William	Technical	Mast depth camera's FOV can be blocked, partially or completely, due to dust, misalignment of camera, or interference from the rover's own excavator assembly.	Hinders the rover's ability to perceive its surroundings accurately, resulting in navigation errors and inefficiencies in excavation tasks	Conduct field tests to choose an optimal height to place the depth camera such that dust does not reach it and it can clearly see in front of the rover, despite the excavator assembly. Ensure that visual data such as depth perception and object detection should not be compromised											
				We have a lot of performance	Delays in testing and validation,	Have revised performance requirements separately for SVD and FVD (focus more on SVD)											
R11 I	Too many performance requirements	Ankit	Technical, Schedule	requirements and we may not be able to meet all of them by April for SVD	impacting project timelines and April SVD Demo results	Talk to CraterGrader and discuss what is feasible and what is not in the given time											
						PM should track schedule properly and team members have to push to meet the timeline											
				The transmission and steering		Thoroughly check the Crater Grader's assembly and carry out maintenance of any worn-out parts											
R12	Drive system wear-and-tear causes malfunction	Deepam Tech	Technical	to suboptimal vehicle dynamics, and	Rover drive system fails and may require a lot of repair and maintenance	Completely replace the assembly parts with the same/similar new parts for better performance and reliability											
						Added limit switches to avoid steering gears to operate beyond their limits											
													Due to significant sand manipulation,				Design proper sand enclosures and mounts for sensitive components
				the flying sand/dust can enter and accumulate over sensitive electronics	Component failure during testing or demonstrations. Highly inhibits all future scheduled tasks	Review placement of components											
R14	Dust ingress	William	m Technical, Cost	(PDB_drivers_Arduino) and sensors		Review scale and speed of sand manipulation to eliminate root-cause of flying sand/dust											
				component failure or incorrect sensing		Allocate contingency budget and order spares of the sensitive components in case of component failure											

		Risk				
Risk ID	Risk Title	Owner	Type	Description	Consequence	Risk Reduction Plan
				Code modifications or config parameter changes during testing		Implement GitHub version control to store and retrieve the best versions of code and configuration
R16	Code version control	Simson	Technical	might not be saved, affecting the final demo. Reverting to a stable version is difficult if changes do not work as expected.	Delay in code integration and implementation	Use Google Drive to backup important documentation explaining setup processes
D40	Managaria di a	A m Lit	Lagistica	Critical project items may go missing if not stored properly or tracked.	Delay in hardware	Maintain an inventory tracking spreadsheet
R19	Items missing	Ankit	Logistics	Items may be misplaced or borrowed without proper logging	implementation	Include spare inventory
	Sensor ROS packages		Technical,	Finalized sensors might lack compatible ROS packages, leading	Delay in software implementation	Perform trade studies to pick sensors that are compatible with ROS versions before finalizing
R20	not available	William	Schedule	to delays or significant changes in the software architecture	Delay III Soltware Implementation	Select sensors and ROS versions that minimize potential conflicts
R23	Lunar-accurate cut/fill regions are not	Simson	Technical	The rims of the craters may not be enough to fill the whole crater. Going to a different region to carry the	The basic assumption of sand availability fails. We may need to rethink the basic concept of tool	Accurately create the environment and assess if the rims are enough to fill
	possible to groom			sand to the crater may prove to be inefficient	planner to fit the new parameters of the environment	If not, modify PRs accordingly

Risk ID	Risk Title	Risk Owner	Type	Description	Consequence	Risk Reduction Plan
R24	Sensor data is too noisy to fulfill performance requirements	William	Technical	Performance requirements are tough and ambitious, sensor noise may prevent us from achieving it	Failure to demonstrate performance requirements may cause us to lose marks in the	Relax the performance requirements enough to ensure that they are achievable
	requirements				demonstrations	Ensure enough testing time to tune parameters
R26		Ankit	Technical	No off-the-shelf wheels fit the rover, We'll have to redesign wheel hubs and mountings as per the new	Continue with sub-optimal wheels that the rover currently has, thus, not meeting one of the	Shift requirements to FVD
	rover			wheels.		Good enough market research to see find the best fit, with least amount of changes

				Unable to login to TX2 and interface with a LAN network for		Set up a new TX2 (Re-flash the TX2). Reach out to previous teams to
D07	TVO late median	\ A (*11) =		transmitting data over WiFi ro	Delay in finalizing	understand their methodology and
R27	TX2 Integration	William	al	Jetson	localization stack	retrieve credentials
	Electrical hardware		Technic	E-box Design dependence on to-be	Not meeting the	Use previous knowledge and account
R28	finalization	Ankit	al	manufactured PDB.	hardware deadline	for a placeholder in the design
				Without access, no hardware		Try other fab-labs on campus.
	Access to FRC	Deepa		fabrication/repairs can be carried	Not meeting the	Request Tim, John or Red for getting
R29	Workshop	m	Logistics	out in the absence of Tim	hardware deadline	temporary access, if not permanent
						Check out eBay and other similar
						platforms for spares
						Check out and stock similar parts if not
					The whole project	same
					falling through, or	Find a twin rover that was used by a
					redo almost all	previous team on campus
				Discontinued model, spare parts	subsystems on a	Maintain all parts, especially mechanical
R30	No spares available	Team	Logistics	unavailable	different rover.	parts